CHAINS AND UNIONS OF PRIME SUBMODULES

YASOUB SHAHVALIZADEH

Department of Mathematics, Islamic Azad University of Ardabil Branch, Ardabil, Iran. E-mail address

Original Article:

Received 30 April. 2017 Accepted 30 July. 2017 Published 08 Sep. 2017

Abstract

Abstract. Let R be a commutative ring with identity and let M be a unital R-module. In this paper we study the various properties of prime submodules. Also we give a new equivalent conditions for a minimal prime submodules of an R-module to be a finite set, whenever R is a Noetherian ring. Finally we prove the Prime avoidance Theorem for modules in different states.

Keyword:
CHAINS
UNIONS
PRIME SUBMODULES

[^0]1. Introduction

Throughout this paper, let R be a commutative ring (with identity) and M be a unital R-module. A proper submodules N of M with $N s_{R} M=p$ is said to be prime or p-prime (p a prime ideal of R) if $r x \in N$ for $r \in R$ and $x \in$ M implies that either $x \in N$ or $r \in p$. Another equivalent notion of prime submodules was first introduced and systematically studied in [5]. Prime submodules have been studied by several authors; see, for example, [3], [1], [6], [8], [9], [10], [11] and [13]. In section 2 we study the chain of prime submodules and we shall improve the results given in [10]. The Prime avoidance Theorem states that if an ideal I of a ring is contained in the union of finite number of prime ideals, then I must be contained in one of them. This result's generalization for the non-commutative case has been proved in [7]. In section 2, we generalize this theorem for modules in different states. In section 4 we prove some new results about the finiteness of the set of minimal prime submodules of an R-module. Also we introduce the concept of arithmetic rank of a submodule of a Noetherian module and we give an upper bound for it. Throughout, for any ideal b of R, the radical of b , denoted by $\operatorname{Rad}(b)$, is defined to be the set $\left\{x \in R: x^{n} \in b\right.$ for some $n \in N\}$ and we denote $\{p \in \operatorname{Spec}(R): p \supseteq b\}$ by $V(b)$, where $\operatorname{Spec}(R)$ denotes the set of all prime ideals of R. The symbol \subseteq denotes containment and $ᄃ$ denotes proper containment for sets. If N is a submodule of M, we write N $\leq M$. We denote the annihilator of a factor module M / N of M by $\left(N:_{R} M\right)$. The set of all maximal ideals of R is denoted by $\operatorname{Max}(R)$. For any ideal I of a ring R and for any R-module $M, \Gamma_{I}(M)$ is defined to be the submodule of M consisting of all elements annihilated by some power of I, i.e., $\mathrm{U}_{n=1}^{\mathrm{m}}\left(0_{\mathrm{a}_{M}} I^{n}\right)$. For any unexplained notation and terminology we refer the reader to [4], [12] and [15].
2. Chains of prime submodules

The results of this section are generalizations of the some results given in [10] and [3]. First we need the following definition.
Definition 2.1. Let R be a Noetherian ring and M be a finitely generated R-module. For each $p \in \operatorname{Spec}(R)$ we define $\lambda_{p}(M)$ as following:
$\lambda_{p}(M)=\operatorname{dim}_{R_{p} / p R_{p}}\left(M_{p} / p M_{p}\right)$.
Remark 2.2. Let R be a Noetherian ring and M be a finitely generated R-module. For each $p \in \operatorname{Spec}(R), \lambda_{p}(M)$ is the number of elements of any minimal generator set of the $R p$-module $M p$ and so $\lambda_{p}(M)<\infty$. Also we have $\lambda_{p}(M)=0$ if and only if $p \notin \operatorname{Supp}(M)$. Moreover, for any pair $q \subseteq p$ of prime ideals of R it is easy to see that $\lambda_{q}(M) \leq \lambda_{p}(M)$.
The following description of prime submodules will be useful in this paper.
Lemma 2.3. Let R be a Noetherian ring and $p \in \operatorname{Spec}(R)$. Let M be a finitely generated R-module and N be a proper submodule of M. Then the followings are equivalent:
(i) N is p-prime submodule of M.
(ii) $\operatorname{Ass}_{R}(M / N)=\{p\}$ and $\left(N s_{R} M\right)=p$.
(iii) $\left(N r_{R} x\right)=p$, for each $x \in M / N$.

Proof. Easily follows from definition.
The following theorem is the first main result of this paper and a generalization of [10, Lemma 2.6].
Theorem 2.4. Let R be a Noetherian ring and $p \in \operatorname{Supp}(M)$. Let M be a finitely generated R-module. Then the following statements hold:
(i) The length of any chain of p-prime submodules of M is bounded from above by $\lambda_{p}(M)-1$.
(ii) There is a chain of p-prime submodules of M, which is of length $\lambda_{p}(M)-1$.
(iii) Any saturated maximal chain of p-prime submodules of M is of length $\lambda_{p}(M)-1$.
Proof. (i) Let $n:=\lambda_{p}(M)$. Then it follows from the hypothesis $p \in \operatorname{Supp}(M)$ that $n>0$. Suppose the contrary be true. Then there exist a chain of p-prime submodules of M as;
$N_{0} \subset N_{1} \subset \cdots \subset N_{n}$
By Lemma 2.3 we have $p \in \operatorname{Supp}\left(M / N_{n}\right)$ and so $l_{R_{p}}\left(\left(M / N_{n}\right)_{p}\right) \geq 1$. On the other hand since by assumption we have $\left(N_{0}:_{R} M\right)=p$, it follows that there is an exact sequence
$M / p M \rightarrow M / N_{0} \rightarrow 0$.
Hence we have the following exact sequence:
$(M / p M)_{p} \rightarrow\left(M / N_{0}\right)_{p} \rightarrow 0$.
Therefore, it follows from definition that
$l_{R_{p}}\left(\left(M / N_{0}\right)_{p}\right)=\operatorname{dim}_{R_{p} / p R_{p}}\left(\left(M / N_{0}\right)_{p}\right) \leq \lambda_{p}(M)=n$.
On the other hand for each $0 \leq i \leq n-1$ there is an exact sequence
$0 \rightarrow N_{i+1} / N_{i} \rightarrow M / N_{i}$.
But, since $N_{i+1} / N_{i} \neq 0$, it follows from Lemma 2.3 and above exact sequence that
$\emptyset \neq \operatorname{Ass}_{R}\left(N_{i+1} / N_{i}\right) \subseteq \operatorname{Ass}_{R}\left(M / N_{i}\right)=\{p\}$,
Which implies that $\operatorname{Ass}_{R}\left(N_{i+1} / N_{i}\right)=\{p\}$. In particular $p \in \operatorname{Supp}\left(N_{i+1} / N_{i}\right)$, and so $\left(N_{i+1} / N_{i}\right)_{p} \neq 0$. Consequently
$l_{R_{p}}\left(\left(N_{i+1} / N_{i}\right)_{p}\right) \geq 1$. Whence, we have
$n=\sum_{i=0}^{n-1} 1 \leq \sum_{i=0}^{n-1} l_{R_{p}}\left(\left(N_{i+1} / N_{i}\right)_{p}\right)=l_{R_{p}}\left(\left(N_{n} / N_{0}\right)_{p}\right) \leq l_{R_{p}}\left(\left(M / N_{0}\right)_{p}\right)-1 \leq n-1$
,Which is a contradiction.
(ii) Let $\lambda_{p}(M)=n$. Then $n>0$. As $p \in \operatorname{Supp}(M)$ it follows that $\left(p M:_{R} M\right)=p$. Therefore, $p \in$ Ass $_{R}(M / p M)$. Let $N_{0}=p M$, whenever Ass $(M / p M)=\{p\}$. In other case suppose
Ass $_{R}(M / p M) \backslash\{p\}:=\left\{q_{1}, \cdots, q_{k}\right\}$.
Let $I=\cap_{j=1}^{k} q_{j}$ and $N_{0} / p M:=\Gamma_{I}(M / p M)$. Then we have
$\operatorname{Ass}_{R}\left(M / N_{0}\right)=\operatorname{Ass}_{R}\left((M / p M) / \Gamma_{I}(M / p M)\right)=\operatorname{Ass}_{R}(M / p M) \backslash V(I)$
.But, since for each $1 \leq j \leq k$ we have $\operatorname{Ann}_{R}(M / p M)=p \subseteq q_{j}$ and $q_{j} \neq p$, it follows that $p \notin V\left(q_{j}\right)$. Therefore
$p \notin U_{j=1}^{k} V\left(q_{j}\right)=V\left(\cap_{j=1}^{k} q_{j}\right)=V(I)$.
Therefore
$\operatorname{Ass}_{R}\left(M / N_{0}\right)=\operatorname{Ass}_{R}(M / p M) \backslash V(I)=\{p\}$,

University College of Takestan

Which results $\operatorname{Ann}_{R}\left(M / N_{0}\right) \subseteq p$. Therefore, we have $\mathrm{p}=\left(\mathrm{pM}:_{\mathrm{R}} \mathrm{M}\right) \subseteq\left(\mathrm{N}_{0}:_{\mathrm{R}} \mathrm{M}\right) \subseteq \mathrm{p}$ and so $\left(N_{0}:_{R} M\right)=p$. Also as
$A s s_{R}\left(N_{0} / p M\right)=\operatorname{Ass}_{R}\left(\Gamma_{l}(M / p M)\right)=\operatorname{Ass}_{R}(M / p M) \cap V(I)$
It follows that $p \notin \operatorname{Supp}\left(N_{0} / p M\right)$ and hence $\left(N_{0} / p M\right)_{p}=0$. Now in both cases it follows from Lemma 2.3 that N_{0} is a p-prime submodule of M . We shall construct the chain $N_{0} \subset \cdots \subset N_{n-1}$ of p-prime submodules of M such that $l_{R_{p}}\left(\left(N_{i+1} / N_{i}\right)_{p}\right)=1$, for
each $0 \leq i \leq n-2$, by an inductive process. To do this end, assume $0 \leq j<n-1$, and that we have already constructed $N_{0} \subset N_{1} \subset \cdots \subset N_{j}$. We show how to construct N_{j+1}. To do this, since by definition $M \neq N_{j}$ it follows that there is an element $x \in M \backslash N_{j}$. Let $L:=R x+N_{j}$. In view of Lemma 2.3 we have $L / N_{j} \cong R / p$. In particular we have $l_{R_{p}}\left(\left(L / N_{j}\right)_{p}\right)=1$. By inductive hypothesis we have
$l_{R_{p}}\left((M / L)_{p}\right)=l_{R_{p}}\left(\left(M / N_{0}\right)_{p}\right)-l_{R_{p}}\left(\left(L / N_{0}\right)_{p}\right)=l_{R_{p}}\left((M / p M)_{p}\right)-\left[l_{R_{p}}\left(\left(L / N_{j}\right)_{p}\right)+\sum_{i=1}^{j-1} l_{R_{p}}\left(\left(N_{i+1} / N_{i}\right)_{p}\right)\right]=$
$n-(1+j)=n-j-1>0$.
Therefore, $(M / L)_{p} \neq 0$. Now it is easy to see that $\left(L:_{R} M\right)=p$, and so $p \in \operatorname{Ass}_{R}(M / L)$. Let $N_{j+1}=L$ whenever $\operatorname{Ass}_{R}(M / L)=\{p\}$. In other case suppose
$\operatorname{Ass}_{R}(M / L) \backslash\{p\}:=\left\{q_{1}{ }^{\prime}, \cdots, q_{t}{ }^{{ }^{\prime}}\right\}$.
Let $l=\cap_{i=1}^{t} q_{i}^{i}$ and $N_{j+1} / L:=\Gamma_{J}(M / L)$. Then we have
$A s s_{R}\left(M / N_{j+1}\right)=\operatorname{Ass}_{R}\left((M / L) / \Gamma_{J}(M / L)\right)=\operatorname{Ass}_{R}(M / L) \backslash V(J)$
$l_{R_{p}}\left(\left(\left(N_{j}+R x\right) / N_{j}\right)\right)_{p}=1$. Let $L:=N_{j}+R x$.
Since
N_{j+1} / L is the unique minimal element of the set
$\{N / L: N / L$ is ap-prime submodule of $M / L\}$ again using (i) it follows from the proof of (ii) $\operatorname{that}\left(N_{j+1} / L\right)_{p}=0$. Thus we have
$2 \leq l_{R_{p}}\left(\left(N_{j+1} / N_{j}\right)_{p}\right)=l_{R_{p}}\left(\left(N_{j+1} / L\right)_{p}\right)+l_{R_{p}}\left(\left(L / N_{j}\right)_{p}\right)=0+1=1$, which is a contradiction. This completes the proof.
Now we need the following definitions.
Definition 2.5. Let R be a Noetherian ring and M be a finitely generated R-module. For each p-prime submodule N of M we define p-height of N as:
$p-h t(N):=\sup \left\{k \in N_{0}: \exists N_{0} \subset \cdots \subset N_{K}=N ;\right.$ with $\left.N_{i} \in S p e c_{R}^{p}(M), \forall i\right\}$ where $\operatorname{Spec}_{R}^{p}(M)$ denotes to the set of all p-prime submodules of M as an R-module.
Definition 2.6. Let R be a Noetherian ring and M be a finitely generated R-module. For each p-prime submodule N of M we define height of N as:
$h t(N):=\sup \left\{k \in N_{0}: \exists N_{0} \subset \cdots \subset N_{K}=N\right.$; with $N_{i} \in \operatorname{Spec}_{R}(M)$, $\left.\forall i\right\}$
where $\operatorname{Spec}_{R}(M)$ denotes to the set of all prime submodules of M as an R-module.
Definition 2.7. Let R be a Noetherian ring and M be a finitely generated R-module.
Then we define $\operatorname{dimSpec}_{R}(M)$ as:
$\operatorname{dimSpec}(M):=\sup \left\{h t(N): N \in \operatorname{Spec}_{R}(M)\right\}$.
The following result is an immediately consequence of Theorem 2.4.
Corollary 2.8. Let R be a Noetherian ring and M be a finitely generated R-module and N be a p-prime submodule of M. Then
$p-h t(N)=l_{R_{p}}\left((N / p M)_{p}\right)=\operatorname{dim}_{R_{p} / p R_{p}}\left(N_{p} / p M_{p}\right)$.
Proof. Let $k:=p-h t(N)$. Then there is saturated chain of p-prime submodules of M as $N_{0} \subset \cdots \subset N_{K}=N$. By the proof of Theorem 2.4 this chain can be extended to a maximal saturated chain of p-prime submodules of M as $N_{0} \subset \cdots \subset N_{K}=N \subset \cdots \subset N_{n-1}$,
Where $\lambda_{p}(M)=n$. Then by the proof of Theorem 2.4 we have $\left(N_{0} / p M\right)_{p}=0$ and $l_{R_{p}}\left(\left(N_{i+1} / N_{i}\right)_{p}\right)=1$, for each $0 \leq i<n-2$. Now clearly the assertion holds.
As an application of Theorem 2.4 we prove the following.

Theorem 2.9. Let R be a Noetherian ring and M be a finitely generated R -module and N be a p-prime submodule of M. Then
$h t(N) \leq\left(\lambda_{p}(M)\right)\left(\operatorname{dim}_{R_{p}}\left(M_{p}\right)\right)<\infty$,
Proof. Let $N_{k} \subset \cdots \subset N_{0}=N$ be a chain of prime submodules of M , such that for each $0 \leq i \leq k, N_{i}$ is p_{i} prime, where $p_{0}=p$. Then it easily follows from definition that
$p_{k} \subseteq \cdots \subseteq p_{0}=p$.
Therefore, the set $\left\{p_{i}\right\}_{i=0}^{k}$ has at most $\operatorname{dim}_{R_{p}}\left(M_{p}\right)$ element.
(Note that $p_{i} \in \operatorname{Supp}(M)$, for all $0 \leq i \leq k$). Let
$\left\{p_{i}\right\}_{i=0}^{k}=\left\{q_{0}=p, \cdots, q_{t}\right\}$,
where $t \leq \operatorname{dim}_{R_{p}}\left(M_{p}\right)$ and $p=q_{0} \supset \cdots \supset q_{t^{*}} \quad$ Let $\left.A_{j}:=\operatorname{Spec}_{R}^{q_{j}}(M) \cap\left\{N_{i}\right\}\right\}_{i=0}^{k}$, for each $0 \leq j \leq t$. Then by Theorem 2.4 the set A_{j} has at most $\lambda_{q_{j}}(M)$ element. But $\lambda_{q_{j}}(M) \leq \lambda_{p}(M)$, because $q_{j} \subseteq p$. Therefore as $U_{j=1}^{t} A_{j}=\left\{N_{i j}\right\}_{i=0}^{k}$,
it follows that $k \leq t \lambda_{p}(M) \leq\left(\operatorname{dim}_{R_{p}}\left(M_{p}\right)\right) \lambda_{p}(M)$. Which implies that
$h t(N) \leq\left(\lambda_{p}(M)\right)\left(\operatorname{dim}_{R_{p}}\left(M_{p}\right)\right)<\infty$,
as required.
3. Prime avoidance Theorem

The results of this section which will be useful in the next section improve some well known results given in [8].
Proposition 3.1. Let R be ring and M be a non-zero R module and N be a submodule of M. Let p_{1}, \cdots, p_{n} be distinct prime ideals of R. Let for each $1 \leq i \leq n, N_{i}$ be a p_{i}-prime submodule of M. If $N \subseteq \mathrm{U}_{i=1}^{n} N_{i}$, then $N \subseteq N_{j}$ for some $1 \leq j \leq n$.
Proof. We do induction on n. The case $n=2$ is easy. Now let $n \geq 3$ and the case $n-1$ is settled. By definition for each $1 \leq i \leq n$ we have $p_{i}=\left(N_{i}{ }^{\prime}{ }_{R} M\right)$. From the hypothesis $N \subseteq \bigcup_{i=1}^{\mathbb{M}} N_{i} \quad$ it follows that $N=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}}\left(N_{\mathrm{i}} \cap N\right)$. Now let the contrary be true. Then $N \Phi N_{i}$ and hence $\left(N_{i} \cap N\right) \neq N$, for any $1 \leq i \leq n$. Also from the inductive hypothesis it follows that $N \neq \mathrm{U}_{\left.\mathrm{i} \in\left(\left[1_{1},-n\right]\right)\right)_{i k j}}\left(N_{i} \cap N\right)$ for each $1 \leq k \leq n$ and so $\left(N_{k} \cap N\right) \Phi \mathrm{U}_{i \in([1, \sim n)]}(\mathrm{k})\left(N_{\mathrm{i}} \cap N\right)$. Let q be a minimal element of the set $\left\{p_{1}, \cdots, p_{n}\right\}$ with respect to ${ }^{m} \subseteq{ }^{m}$. Then $p_{\mathrm{i}} \nsubseteq q$ for each $p_{\mathrm{i}} \in\left(\left\{p_{1}, \cdots, p_{n}\right\} \backslash\{q\}\right)$. Without loss of generality we may assume that $q=p_{n}$. Let $l_{i}:=\left(N_{i}{ }^{n}{ }_{R} N\right)$, for all $i=1_{n}, \cdots, n$. Then from the definition it follows that $p_{i} \subseteq J_{i}$, for all $i=1, \cdots, n$. On the other hand for each $x \in N$ and $r \in R$, if $r x \in\left(N_{i} \cap N\right)$ and $x \notin\left(N_{\mathrm{i}} \cap N\right)$, then $r x \in N_{\mathrm{i}}$ and $x \notin N_{\mathrm{i}^{*}}$ Therefore it follows from the definition that $r \in p_{i}$. So $r M \subseteq N_{i}$, and consequently, $r N \subseteq\left(N_{\mathrm{i}} \cap N\right)$. As $\left(N_{\mathrm{i}} \cap N\right) \neq N$ it follows that there exists an element $y \in\left(N \backslash\left(N_{i} \cap N\right)\right)$. Now for each $s \in J_{\mathrm{i}}$ we have $s y \in\left(N_{i} \cap N\right) \subseteq N_{i}$ and $y \notin N_{i}$. So it follows from the definition that $s \in p_{i}$. Therefore, $\left(N_{i}{ }_{D_{R}} N\right)=J_{\mathrm{i}}=p_{\mathrm{i}}=\left(N_{\mathrm{i}}:_{\mathbb{R}} M\right) \cdot$ But it is easy to see
that $\quad\left(N_{i}:_{R} N\right)=\left(\left(N_{i} \cap N\right):_{R} N\right)$. Thus for each $1 \leq i \leq n$,
$N_{i} \cap N$ is p_{i}-prime submodule of N. Therefore without loss of generality we may assume that $N=M=\bigcup_{i=1}^{p} N_{i}$ and $N_{n} \mp \mathrm{U}_{\mathrm{i}=1}^{n-1} N_{\mathrm{i}}$. Next let $T:=\bigcap_{\mathrm{i}=1}^{n} N_{\mathrm{i}}$. Then it is not to see that for each $1 \leq i \leq n, N_{i} / T$ is p_{i}-prime submodule of M / T and $M / T=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} N_{\mathrm{i}} / T$. Therefore, without loss of generality we may assume $M=\bigcup_{i=1}^{n} N_{\mathrm{i}}$ and $\cap_{\mathrm{i}=1}^{\mathrm{n}} N_{\mathrm{i}}=0$ and $N_{n} \mp \mathrm{U}_{i=1}^{n-1} N_{\mathrm{i}}$. Then there is an exact sequence $0 \rightarrow M \rightarrow \oplus_{i=1}^{n} M / N_{i}$, which implies that $\cap_{i=1}^{n} p_{i}=A n n_{R}\left(\oplus_{i=1}^{n} M / N_{i}\right) \subseteq \operatorname{Ann}_{R}(M)$. On the other hand for each $1 \leq i \leq n$ we have $A n_{R}(M) \subseteq\left(N_{i}{D_{R}}_{R} M\right)=p_{\mathrm{i}} . \quad$ So $A n_{R}(M) \subseteq \cap_{i=1}^{n} p_{\mathrm{i}}$. Hence $\quad \operatorname{Ann}_{R}(M)=\bigcap_{i=1}^{n} p_{i}$. Now if we have $\cap_{i=1}^{n-1} N_{i}=0$, then there is an exact sequence
$0 \rightarrow M \rightarrow \oplus_{i=1}^{n-1} M / N_{i} \quad$ which implies that $\cap_{i=1}^{n-1} p_{\mathrm{i}}=\operatorname{Ann}_{\mathrm{R}}\left(\oplus_{\mathrm{i}=1}^{n-1} M / N_{\mathrm{i}}\right) \subseteq \operatorname{Ann}_{\mathrm{R}}(M)=\cap_{\mathrm{i}=1}^{\mathrm{n}} p_{\mathrm{i}} \subseteq p_{n}$. So $p_{t} \subseteq p_{n x}$ for some $1 \leq t \leq n-1$, which is a contradiction. So $\cap_{i=1}^{n-1} N_{i} \neq 0$. Then there is an element $0 \neq \mathrm{a} \in \cap_{i=1}^{n-1} N_{\mathrm{i}}$. As $\cap_{i=1}^{n} N_{\mathrm{i}}=0$, it follows that $a \notin N_{n}$. On the other hand since $N_{n} \nsubseteq \mathrm{U}_{i=1}^{n-1} N_{i}$, it follows that there is an element $b \in N_{n}$ such that $b \notin \bigcup_{i=1}^{n-1} N_{i^{*}}$ Now as $a+b \in \mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} N_{\mathrm{i}} x$ it follows that $a+b \in N_{k}$ for some $1 \leq k \leq n$, which is a contradiction. This completes the inductive step.
Remark: Proposition 3.1 does not hold in general. For example let $p \geq 2$ be a prime number and $2 \leq n \in \mathbb{N}$. Let $R=\mathbb{Z}_{p}=\left\{\overline{0}, \overline{1}_{v} \cdots, \overline{p-1}\right\}$ and $M=\oplus_{i=1}^{n} \mathbb{Z}_{p}$ Let $थ=\{N: N=R x$, for some $0 \neq x \in M\}$.
Then \mathbb{N} is a finite set that has at most $2^{p^{n}}$ element and for each $N \in \mathbb{M}, N$ is a $\{\overline{0}\}$-prime submodules of M such that $M \subseteq \mathrm{U}_{N \in \mathbb{Z}} N$. But $M \Phi N$ for any $N \in$ W.
The following proposition is a generalization of [12, Ex. 16.8].

Proposition 3.2. Let R be a ring, M a non-zero R-module, N a submodule of M and $x \in M$. Let p_{1}, \cdots, p_{n} be distinct prime ideals of R. Let for each $1 \leq i \leq n, N_{i}$ be a p_{i}-prime submodule of M. If $N+R x \Phi \mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} N_{\mathrm{i}}$, then there exists $a \in N$ such that $a+x \notin \bigcup_{i=1}^{n} N_{\mathrm{i}^{*}}$
Proof. We use induction on n. Let $n=1$. If $x \in N_{1}$ then $N \nsubseteq N_{1}$. So there is $a \in N \backslash N_{1}$ and it is easy to see that $a+x \notin N_{1}$. But if $x \notin N_{1}$, then by choosing $a=0 \in N$ the assertion holds. Now suppose $n \geq 2$ and the case $n-1$ is settled. Let q be a minimal element of the set $\left\{p_{1}, \cdots, p_{n}\right\}$ with respect to ${ }^{"} \underline{C}^{"}$. Then $p_{\mathrm{i}} \ddagger q$ for each $p_{i} \in\left(\left\{p_{1}, \cdots, p_{n}\right\} \backslash\{q\}\right)$. Without loss of generality we may assume that $q=p_{n}$. Then it is easy to see that $\bigcap_{i=1}^{n-1} p_{i} \ddagger p_{n}$. By inductive hypothesis there is an element $b \in N$ such that $b+x \notin \bigcup_{i=1}^{n-1} N_{i}$. So the assertion hold for $a=b$, whenever $b+x \notin N_{n}$. So we may assume $b+x \in N_{n}$. Then we claim that $N \subseteq N_{n}$. Because, if $N \subseteq N_{n}$ then $x \in N_{n}$ and so $N+R x \subseteq N_{n} \subseteq \mathrm{U}_{i=1}^{n} N_{i}$,

University College of Takestan

which is a contradiction. Therefore, there exists an element $c \in N \backslash N_{n}$. As $\bigcap_{i=1}^{n-1} p_{i} \Phi p_{n}$ it follows that there exists an element $\quad r \in\left(\cap_{i=1}^{n-1} p_{i}\right) \backslash p_{n}$. Then it easily follows from the definition of the p_{n}-prime submodule that $r c \notin N_{n}$. Moreover, since $r \in \bigcap_{i=1}^{n-1} p_{i}$ it follows from the definition that $r c \in \cap_{i=1}^{n-1} N_{i}$. Now it is easy to see that $r c+b+x \notin \bigcup_{i=1}^{n} N_{i}$. Therefore, the assertion hold for $a:=r c+b \in N$. This completes the induction step.
Remark: Proposition 3.2 does not hold in general. For example let $p \geq 2$ be a prime number and $R=\mathbb{Z}_{p}=\left\{\overline{0}, \overline{1}_{,} \cdots, \overline{p-1}\right\}$ and $M=\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$. Let $N=(\overline{1}, \overline{0}) \mathbb{Z}_{p}, \quad x=(\overline{0}, \overline{1})$ and $\quad N_{i}=(\bar{i}, \overline{1}) \mathbb{Z}_{p}$, for $i=0, \cdots, p-1$. Then N_{i} is $\{\overline{0}\}$-prime submodule of the R-module M, for all $i=0, \cdots, p-1$. Also as $(\overline{1}, \overline{0}) \in N+R x \quad$ and $\quad(\overline{1}, \overline{0}) \notin \bigcup_{i=0}^{p-1} N_{i}, \quad$ it follows that $N+R x \nsubseteq \mathrm{U}_{\mathrm{i}=0}^{p-1} N_{\mathrm{i}}$. But for any $a \in N$ we have $a+x \in \bigcup_{i=0}^{p-1} N_{i}$.
Now we give an other aspects of prime avoidance Theorem in different states.
Proposition 3.3. Let R be a ring, M a non-zero R-module, N a submodule of M and $k \in \mathbb{N}$. Let for each $1 \leq i \leq k$, $n_{\mathrm{i}} \in \mathbb{N}$ and for $1 \leq i \leq k$ and $1 \leq j \leq n_{\mathrm{i}}$, the ideals $p_{\mathrm{i}, j}$ be distinct elements of $\operatorname{Spec}(R)$. Let for each $1 \leq i \leq k$ and $1 \leq j \leq n_{\mathrm{i}}, N_{i, j}$ be a $p_{\mathrm{i}, j}$-prime submodule of M. Let for each $1 \leq i \leq k, N_{i}=\cap_{j=1}^{n_{i}} N_{i, j}$. If $N \subseteq \bigcup_{i=1}^{k} N_{i}$, then $N \subseteq N_{t}$ for some $1 \leq t \leq k$.
Proof. Let the contrary be true. Then for each $1 \leq i \leq k$ we have $N \nsubseteq N_{i}$. Therefore there exists $1 \leq s_{i} \leq n_{i}$ such that $N \Phi N_{i, \mathscr{s}_{i}}$. But in this situation we have
$N \subseteq \mathrm{U}_{\mathrm{i}=1}^{k} N_{\mathrm{i}} \subseteq \mathrm{U}_{\mathrm{i}=1}^{k} N_{i, s_{\mathrm{i}}}$.
Consequently, it follows from proposition 3.1 that there is $1 \leq l \leq k$, such that $N \subseteq N_{l, s l}$, which is a contradiction.
Proposition 3.4. Let R be a ring, M a non-zero R-module, N a submodule of $M, x \in M$ and $k \in \mathbb{N}$. Let for each $1 \leq i \leq k, n_{\mathrm{i}} \in \mathbb{N}$ and for $1 \leq i \leq k$ and $1 \leq j \leq n_{\mathrm{i}}$, the ideals $p_{\mathrm{i}, j}$ be distinct elements of $\operatorname{Spec}(R)$. Let for each $1 \leq i \leq k$ and $1 \leq j \leq n_{i}, \quad N_{i, j}$ be a $p_{i, j}$-prime submodule of M. Let for each $1 \leq i \leq k, N_{i}=\bigcap_{j=1}^{n_{i}} N_{i, j}$. If $N+R x \nsubseteq \mathrm{U}_{i=1}^{k} N_{i}$ then there exists $a \in N$ such that $a+x \notin \bigcup_{i=1}^{k} N_{i}$.
Proof. For each $1 \leq i \leq k$ we have $N+R x \nsubseteq N_{i}$. Therefore there exists $1 \leq s_{\mathrm{i}} \leq n_{\mathrm{i}}$ such that $N+R x \nsubseteq N_{i, s_{0}}$. But in this situation using proposition 3.1 we have
$N+R x \nsubseteq \mathrm{U}_{i=1}^{k} N_{i, s_{i}}$.
Consequently, it follows from proposition 3.2 that there is $a \in N$, such that $a+x \notin \bigcup_{i=1}^{k} N_{i, s_{i}}$. But since $\mathrm{U}_{i=1}^{k} N_{i} \subseteq \mathrm{U}_{i=1}^{k} N_{i s_{i}} \quad$, it follows that $a+x \notin \bigcup_{i=1}^{k} N_{i}$, as required.
Proposition 3.5. Let R be a ring, I an ideal of R and $x \in R$. Let $J_{1}, \cdots J_{n},(n \geq 1)$ be ideals of R such that for each $1 \leq i \leq n$ we have $\operatorname{Rad}\left(J_{i}\right)=J_{i}$. If $I+R x \Phi \bigcup_{i=1}^{n} J_{i}$,
then there exists an element $a \in I$ such that $a+x \notin \mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} J_{\mathrm{i}}$.
Proof. For each $1 \leq i \leq n$ we have $l+R x \Phi J_{i}$. Therefore for each $1 \leq i \leq n$, since $l_{i}=\bigcap_{q \in V\left(J_{i}\right)} q$ it follows that there exists $p_{\mathrm{i}} \in V\left(⿹_{\mathrm{i}}\right)$ such that $I+R x \Phi p_{\mathrm{i}}$. But in this situation we have $l+R x \Phi \bigcup_{i=1}^{p} p_{i}$. Consequently, it follows from [12, Ex. 16.8] that there is $a \in I$, such that $a+x \notin \bigcup_{i=1}^{n} p_{\mathrm{i}}$. But since $\mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} J_{\mathrm{i}} \subseteq \mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} p_{\mathrm{i}}$, it follows that $a+x \notin \mathrm{U}_{\mathrm{i}=1}^{\mathrm{n}} J_{\mathrm{i}}$, as required.
Before bringing the next result we need the following well known lemma.
Lemma 3.6. Let (R, m) be a commutative local ring such that R / m is infinite. Let M be an R-module and N_{1}, \cdots, N_{t} be submodules of M such that $M=\mathrm{U}_{\mathrm{i}=1}^{\mathrm{t}} N_{\mathrm{i}}$. Then there exists $1 \leq j \leq t, M=N_{i}$.
Proof. The assertion follows using NAK Lemma.
Proposition 3.7. Let R be a commutative ring, M be an R module and N_{1}, \cdots, N_{t} be submodules of M such that $M=\bigcup_{i=1}^{t} N_{i}$. Then $\cap_{i=1}^{t} \operatorname{Supp} M / N_{i} \subseteq \operatorname{Max}(R)$.
Proof. Suppose the contrary be true. Then there exists $\mathrm{p} \in\left(\cap_{i=1}^{\mathrm{t}} \operatorname{Supp} M / N_{i}\right) \backslash M a x(R)$. So R / p is an integral domain but not a field and therefore $R_{p} / p R_{p}$ is infinite. By hypothesis and Proposition 3.6 there exists $1 \leq j \leq t$ such that $\left(M / N_{j}\right)_{p}=0$ and so $p \notin \operatorname{Supp} M / N_{j}$ which is a contradiction.
Corollary 3.8. Let R be a commutative ring and $p \in \operatorname{Spec}(R) \backslash \operatorname{Max}(R)$. Let M be an R-module and N_{1}, \cdots, N_{t} be p-prime submodules of M and N a submodule of M such that $N \subseteq \bigcup_{i=1}^{t} N_{i}$. Then there exists $1 \leq j \leq t$ such that $N \subseteq N_{j}$.
Proof. Let for any $1 \leq j \leq t, N \Phi N_{j}$. Then for all $1 \leq j \leq t$, we have $N \cap N_{j} \neq N$. Since $p M \subseteq N_{j}$, it follows that $p N \subseteq N_{j}$ and so $p N \subseteq N \cap N_{j}$. Hence $p \subseteq\left(N \cap N_{j}: N\right)$. On the other hand there exists $x \in N \backslash N \cap N_{j}$ and so $x \notin N_{i}$. Let $r \in\left(N_{\mathrm{i}} \cap N: N\right)$. Then $r x \in N_{i} \cap N \subseteq N_{i} \quad$ and $\quad x \notin N_{i}$, so $\quad r \in\left(N_{i}: M\right)=p$. Consequently $\left(N_{i} \cap N: N\right) \subseteq p$ and so $\left(N_{i} \cap N: N\right)=p$. Now it is easy to show that $N_{i} \cap N$ is a p-prime submodule of N. Since $N \subseteq \bigcup_{i=1}^{t} N_{i}$ it follows that N $=\bigcup_{i=1}^{t}\left(N \cap N_{i}\right)$. But in this case $p \in \cap_{i=1}^{t} \operatorname{Supp}\left(N / N_{i} \cap N\right)$. Since $p \in \operatorname{Spec}(R) \operatorname{Max}(R)$ this is impossible by Proposition 3.7.
Proposition 3.9. Let R be a commutative ring and $p \in S p e c(R)$ such that R / p infinite. Let M be an R module and $N_{1}, \cdots, N_{\mathrm{t}}$ be p-prime submodules of M and N a submodule of M such that $N \subseteq \bigcup_{i=1}^{t} N_{i}$. Then there exists $1 \leq j \leq t$ such that $N \subseteq N_{j}$.
Proof. If $p \notin \operatorname{Max}(R)$, the assertion follows from Corollary 3.8. So let $p \in \operatorname{Max}(R)$ and for all $1 \leq i \leq t$, we have $N \nsubseteq N i$. Hence for any $1 \leq j \leq t$, there exists $x_{j} \in N \backslash N_{j}$. Set $N^{f}=\left(x_{1}, \cdots, x_{t}\right) \subseteq N$ and so we have $N^{v} / p N^{t}=\bigcup_{i=1}^{t}\left(\left(N^{t} \cap N_{i}\right)+p N^{t}\right) / p N^{r}$. Since R / p is
infinite，there exists $1 \leq j \leq t$ such that $N^{v} / p N^{t}=\left(\left(N^{s} \cap N_{j}\right)+p N^{t}\right) / p N^{\prime}$ ．This implies that $N^{s}=\left(N^{v} \cap N_{j}\right)+p N^{v} \subseteq p M+N_{j}=N_{j}$ ．Hence $N^{v} \subseteq N_{j}$ which is a contradiction．
Proposition 3．10 Let R be a commutative ring and $p \in \operatorname{Spec}(R)$ such that R / p infinite．Let M be an R－ module and N_{1}, \cdots, N_{t} be p－prime submodules of M and N a submodule of M ．Let $x \in M$ such that $N+R x \Phi \mathrm{U}_{\mathrm{i}=1}^{t} N_{i}$ ．Then there exists $a \in N$ such that $a+x \notin \mathrm{U}_{\mathrm{i}=1}^{\mathrm{t}} N_{\mathrm{i}}$ ．
Proof．It is certainly true for $t=1$ ．Let $t>1$ and the result has been proved for t 目 1 ．If $N \subseteq \mathrm{U}_{\mathrm{i}=1}^{\mathrm{t}} N_{i}$ then by Proposition 3.9 there exists $1 \leq j \leq t$ ，such that $N \subseteq N_{j}$ ． Without loss of generality we may assume that $j=t$ ．By induction hypothesis there exists $b \in N$ such that $b+x \notin \mathrm{U}_{\mathrm{i}=1}^{\mathrm{t}-1} N_{\mathrm{i}}$ ．Since $b+x \notin N_{\mathrm{t}}$ it follows that $b+x \notin \bigcup_{i=1}^{t} N_{i}$ and so the assertion follows．Now suppose that $N \mp \bigcup_{i=1}^{t} N_{\mathrm{i}}$ ，then there exists $c \in N \backslash \bigcup_{i=1}^{t} N_{i}$ ．In this case if $x \notin \bigcup_{i=1}^{t} N_{i}$ we set $a=0$ and if $x \in \cap_{i=1}^{\mathrm{t}} N_{i}$ then we set $a=c$ ．Now suppose that the above conditions are not true．We may assume that there exists $1 \leq k \leq t-1 \quad$ such that $\quad x \in \bigcap_{i=1}^{k} N_{i}$ and $x \notin \mathrm{U}_{\mathrm{i}=k+1}^{t} N_{\mathrm{i}}$ ．Since R / p is infinite，so there exist $t-\mathbb{B} k+1$ non－zero distinct elements in R / p such as $s_{1}+p_{0}, \cdots, s_{t-k+1}+p$. Set $A=\left\{s_{i} c+x \mid i=1, \cdots t-k+1\right\}$ ．If there exists an element $s_{i} c+x$ in A such that $s_{i} c+x \notin \bigcup_{i=1}^{t} N_{i}$ then the proof is complete．Otherwise，for each $1 \leq l \leq t-k+1$ ， there is $1 \leq j \leq t$ such that $s_{i} c+x \in N_{j}$ ．If $1 \leq j \leq k$ then $s_{l} \in p$ and so $s_{l}+p=p$ which is a contradiction．So $k+1 \leq j \leq t$ and hence $A \subseteq \bigcup_{i=k+1}^{t} N_{i}$ ．Whence， according to the Dirichlet drawer principle，there exists $k+1 \leq j \leq t$ and $1 \leq l_{1}<l_{2} \leq t-k+1$ such that $s_{l_{1}} c+x$ and $s_{l_{2}} c+x$ belong to N_{j} ．Therefore $s_{l_{1}}+p=s_{l_{2}}+p$ which is a contradiction．
4．Minimal prime submodules
The following lemma is needed in the proof of the first main result of this section．Note that in the sequel for any submodule B of an R－module M ，the set of all minimal prime submodules of M over B is denoted by $\operatorname{Min}(B)$ ． Moreover，we denote $\operatorname{Min}(0)$ by $\operatorname{Min}(M)$ ．Also，$V(B)$ is defined as follows：
$V(B)=\left\{\mathrm{N} \in \operatorname{Spec}_{\mathrm{R}}(\mathrm{M}): \mathrm{N} \supseteq \mathrm{B}\right\}$.
Lemma 4．1．Let R be a commutative ring and $p, q \in \operatorname{Spec}(R)$ ．Let M be an R－module and $N_{1}, N_{2} \in \operatorname{Min} M$ be respectively p－prime and q－prime submodules．Then $N_{1} \neq N_{2}$ if and only if $p \neq q$ ．
Proof．If $p \neq q$ then obviously $N_{1} \neq N_{2}$ ．Conversely，Let $N_{1} \neq N_{2}$ but $p=q$ ．Since $L_{1}=\bigcap_{L \in S p e c}{ }_{R}^{D}(M)^{L} \quad$ and $L_{2}=\bigcap_{L \in S p a c_{R}^{q}(M)} L$ it follows that $L 1=L 2$ which is a contradiction．

Definition 4．2．Let M be an R－module and B be a submodule of M ．Set
$D(B):=\{N \in \operatorname{Min}(B): N$ is not finitely generated R－module $\}$
The minimal prime submodules of an R－module M has been studied in［16］，for example see［16，Theorem 2．1］．In the next theorem we present a new conditions that an R－ module M has only a finite number of minimal prime submodules，whenever R is a Noetherian ring，which is a generalization of［2，Theorem 2．1］．
Theorem 4．3．Let R be a Noetherian ring，M be an $R-$ module and B be a submodule of M ．Then the following statements are equivalent：
（1） $\operatorname{Min}(B)$ is finite．
（2）For every $\mathfrak{F} \in \operatorname{Min}(B)$ there exists a finitely generated submodule $K_{\text {玉 }}$ of 耳is such that $\left|V\left(K_{\text {w }}\right) \cap \operatorname{Min}(B)\right|<\infty$ ，
（3）For every $\mathfrak{F} \in \operatorname{Min}(B)$ there exists a finitely generated submodule $N_{\text {w }}$ of \mathfrak{F} such that $V\left(N_{\text {w }}\right) \cap \operatorname{Min}(B)=\{\mathfrak{q}\}$
（4）For every $\mathfrak{F} \in \operatorname{Min}(B), \mathfrak{F} \mp \mathrm{U}_{L \in \operatorname{Min}(B)\}(w 1} L$ ．
（5）For every $\mathfrak{q}_{5} \in \operatorname{Min}(B)$ there exists an element $x_{\text {§ }} \in \mathscr{F B}_{8}$ of \mathfrak{F} such that $V\left(R x_{\text {w }}\right) \cap \operatorname{Min}(B)=\{\mathfrak{F}\}$ ．

（7）For every $\mathfrak{F}_{5} \in \mathrm{D}(B)$ there exists an element $x_{\mathbb{Q}} \in \mathscr{F}_{5}$ of $\mathscr{F i}_{\mathrm{F}}$ such that $V\left(R x_{\text {w }}\right) \cap \operatorname{Min}(B)=\{\mathfrak{q}\}$ ．
（8）For every $g_{g} \in D(B)$ there exists a finitely generated submodule $K_{\text {\＃i }}$ of $\mathscr{F i}_{8}$ such that $\left|V\left(K_{\text {w }}\right) \cap \operatorname{Min}(B)\right|<\infty$ ，
（9）For every $\mathfrak{g} \in \mathrm{D}(B)$ there exists a finitely generated submodule $N_{\text {W }}$ of \mathscr{F}_{8} such that $V\left(N_{\mathbb{W}}\right) \cap \operatorname{Min}(B)=\{9\}$ ．
Proof．Without loss of generality，we may assume that $B=$ $0, \quad \operatorname{Spec}_{R}(M) \neq \emptyset \quad$ and consequently $\operatorname{Min}(M) \neq \emptyset$ ． （1）\Rightarrow（2）Since $\operatorname{Min}(M)$ is finite，by Lemma 4.1 and Proposition $\quad 3.1$ ，for every $\quad \mathfrak{F} \in \operatorname{Min}(M)$ ， $\mathfrak{F} \nsubseteq \mathrm{U}_{\mathbb{L \in \operatorname { M i n } (M)} \operatorname{MaM})^{L} \text { and there exists }}$
 finitely generated and set $V\left(K_{w}\right) \cap \operatorname{Min}(B)=\{9\}$ is finite．
$(2) \Rightarrow$（3）Let $\quad ; \in \operatorname{Min}(M) \quad$ and $V\left(K_{\text {w }}\right) \cap \operatorname{Min}(M)=\left\{\mathfrak{F}_{3}, \mathfrak{F}_{2}, \cdots, \mathfrak{F}_{n}\right\}$ ．Using Lemma 4.1 and Proposition 3.1 we can find an
 finitely generated and $\left.V\left(N_{w}\right) \cap \operatorname{Min}(M)=\{9\}\right\}$ ．
$(3) \Rightarrow$（1）Suppose the contrary be true．Then the set $\operatorname{Min}(M)$ is infinite．Let
$A:=\left\{p \in \operatorname{Spec}(\mathrm{R}): \operatorname{Spec}{ }_{R}^{P}(M) \cap \operatorname{Min}(M) \neq \emptyset\right\}$
$E:=\{N \leq M: N$ is finitely generated and $V(N) \cap \operatorname{Min}(M) \neq \emptyset$ is a finite set．$\}$
$F:=\{L \leq M: \forall N \in E, N \Phi L\}$
We show that there exists a maximal element K of F such that $\left(K s_{\mathbb{R}} M\right)$ is a prime ideal．Since $\operatorname{Min}(M)$ is infinite，so the zero submodule of M belong to the F and therefore by Zorn＇s Lemma F has a maximal element．Let L be a maximal element of F ．If $\left(L_{i_{R}} M\right)$ be a prime ideal，we are through．If not，then it is clear that $\left(L_{i_{R}} M\right) \neq R$ ．Let $q_{1} \in A s s_{R}\left(R /\left(L s_{R} M\right)\right)$ ．By the definition there exists

University College of Takestan

$r \in R \backslash\left(L:_{R} M\right)$ such that $q_{1}=\left(\left(L:_{R} M\right): r\right)$ and therefore $q_{1} r M \subseteq L$. Since $r \notin\left(L:_{R} M\right)$, it follows that there exists an element $x \in M$ such that $r x \notin L$. Now there exists $N \in E$ such that $N \subseteq L+R r x$. In particular,
$q_{1} N \subseteq L+q_{1} r x \subseteq L+q_{1} r M \subseteq L$.
Since $q_{1} N$ is finitely generated, so $\| V\left(q_{1} N\right) \cap \operatorname{Min}(M) \mid=\infty$. But in this case for all $\mathfrak{F} \in\left(V\left(q_{1} N\right) \cap \operatorname{Min}(M) \backslash V(N) \cap \operatorname{Min}(M)\right)$, we have $q_{1} N \subseteq \mathscr{F}_{i}$ and $N \Phi \mathscr{F}_{3}$. Now if \mathscr{F}_{F} be a p-Prime submodule, then $\quad q_{1} \subseteq p \quad$ and \quad so $\quad\left|V\left(q_{1}\right) \cap A\right|=\infty$. Hence $\left|V\left(q_{1} N\right) \cap \operatorname{Min}(M)\right|=\infty$. So for all $N \in E$, we have $N \nsubseteq q_{1} M$ and therefore $q_{1} M \in F$. Let
$U:=\left\{q \in V\left(q_{1}\right): q M \in F\right\}$.
Since R is Noetherian it follows that U has a maximal element, say $q_{2} . q_{2} M \subseteq H$, for some maximal element H of F. We claim that $\left(H{ }_{v_{R}} M\right)$ is a prime ideal of R. If not, according to the above argument, there exists $q_{a} \in A s s_{R}\left(R /\left(H:_{R} M\right)\right) \quad$ such that $q_{3} M \in F$ and $q_{2} \subseteq\left(H s_{R} M\right) \subseteq q_{\mathrm{a}}$. By choosing of q_{2}, we must have $q_{2}=q_{\mathrm{a}}$, which is a contradiction. Therefore $\left(H:_{R} M\right)=q_{2}$ is a prime ideal. Now we show that H is a q_{2}-prime submodule. Otherwise there exist $x \in M \backslash H$ and $r \in R \backslash q_{2}$, such that $\quad r x \in H$.So $r \in Z_{R}(M / H)=\mathrm{U}_{q \in A s s_{R}(M / H)} q$ and hence there exists $q^{t} \in A s s_{R}(M / H)$ such that $r \in q^{r}$. Consequently, $q_{2} \subset q^{F}$. On the other hand by definition $q^{\prime}=\left(H:_{R} y\right)$ for some $y \in M \backslash H$. Since $H \subset H+R y$, it follows that there exists $N \in E$ such that $N \subseteq H+R y$ and so $q^{t} N \subseteq H$. According to the above argument, $\left\|V\left(q^{\prime} M\right) \cap \operatorname{Min}(M)\right\|=\infty$ which implies $q^{\prime} M \in F$. Finally, we have $q_{2}=\left(H_{\circ_{R}} M\right) \subset q^{\prime}$, which is a contradiction withthe choosing of q_{2}. Therefore H is a q_{2}-prime submodule of M. Whence, H contains a minimal prime submodule of M such as \Re_{3}. By assumption there exists a submodule N_{84} of \mathscr{F}_{3} such that $N_{8 p} \subseteq \mathscr{F} \subseteq H$ and $N_{\mathrm{xy}} \in E$, which is a contradiction. Therefore, $\operatorname{Min}(M)$ is a finite set
Now the proof of (1) \Leftrightarrow (2) \Leftrightarrow (3) is complete.
(1) \Rightarrow (4) Follows from Lemma 4.1 and Proposition 3.1.
(4) \Rightarrow (1) \Leftrightarrow (5) Since (5) \Leftrightarrow (4) \Rightarrow (3) is clear so we have (1) \Leftrightarrow (4) \Leftrightarrow (5).
Now we have the following:
(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5).
(4) \Rightarrow (6) Is clear.
(6) \Rightarrow (3) \quad Since for every $\quad \mathfrak{F} \in D(0)$, $\mathfrak{F} \mp \mathrm{U}_{L \in \operatorname{Min}(M) \backslash \mathbb{W})} L$, it follows that thereexists $x_{\text {M }} \in \mathfrak{F}$ such that $V\left(R x_{\text {w }}\right) \cap \operatorname{Min}(B)=\{\mathfrak{F}\}$. On the other hand for all $\mathfrak{g} \in(\operatorname{Min}(M) \backslash D(0))$, we have $V(\xi) \cap \operatorname{Min}(B)=\{9\}\}$, where \mathscr{q}_{8} is finitely generated. So the assertion follows.
(6) \Leftrightarrow (7) and (1) \Rightarrow (8), (9) are clear.
(8), (9) \Rightarrow (3) Follow by a similar arguments as in (6) \Rightarrow (3).

The following results follow from Theorem 4.3.
Corollary 4.4. Let R be a Noetherian ring, M an R-module and B be a proper submodule of M. Then $\operatorname{Min}(B)$ is infinite
if and only if there exists $\mathscr{F} \in D(B)$ such that

Proof. Follows immediately from Theorem 4.3.
Corollary 4.5. Let R be a Noetherian ring, M an R-module and B be a proper submodule of M such that any minimal prime submodule over B is finitely generated. Then $\operatorname{Min}(B)$ is finite.
Proof. Follows immediately from Theorem 4.3 .
Definition 4.6. Let R be a Noetherian ring, $M \neq 0$ a finitely generated R-module and N be a proper submodule of M. Then the radical of N is defined as:
$\operatorname{Rad}(N)=\bigcap_{L \in \operatorname{Min} N} L$.
Before bringing the next definition, recall that for any ideal I of a Noetherian ring, the arithmetic rank of I, denoted by $\operatorname{ara}(I)$, is the least number of elements of I required to generate an ideal which has the same radical as I, i.e., $\operatorname{ara}(I):=\min \left\{n \in \mathbb{N}_{0}: \exists x_{1}, \cdots, x_{n} \in I\right.$ with $\left.\operatorname{Rad}\left(\left(x_{1}, \cdots, x_{n}\right)\right)=\operatorname{Rad}(l)\right\}$
Definition 4.7. Let R be a Noetherian ring, $M \neq 0$ a finitely generated R-module and N be a proper submodule of M.
We define the arithmetic rank of N, as:
$\operatorname{ara}(N):=\min \left\{n \in \mathbb{N}_{0}: \exists x_{1}, \cdots, x_{n} \in N\right.$ with $\left.\operatorname{Rad}\left(\left(x_{1}, \cdots, x_{n}\right)\right)=\operatorname{Rad}(N)\right\}$
The next theorem is a generalization of [14, Theorem 2.7].
Theorem 4.8. Let R be a Noetherian ring, $M \neq 0$ a finitely generated R-module and N be a proper submodule of M.
Then ara $(N) \leq \operatorname{dim} \operatorname{Spec}_{R}(M)+1$.
Proof. Let $d:=\operatorname{dim} \operatorname{Spec}_{R}(M)$. We may assume that d is finite. Now, suppose, to the contrary, that $\operatorname{ara}(N)>d+1$. Let $n:=\operatorname{ara}(N)$. Since $n>d+1 \geq 1$ it follows from the definition that there exist elements x_{1}, \cdots, x_{n} in N such that $\operatorname{Rad}(N)=\operatorname{Rad}\left(\left(x_{1}, \cdots, x_{n}\right)\right)$.As $n>0$ it follows that $\operatorname{Min}(0) \backslash V(N) \neq \emptyset$. Therefore it follows from Lemma 4.1and proposition 3.1 that $N \leftrightarrows \mathrm{U}_{L \in \operatorname{Min}(0) \nmid \mathrm{V}(\mathbb{N})} L . \quad$ Therefore $\left(x_{1}, \cdots, x_{n}\right) \mp \mathrm{U}_{L \in \operatorname{Min}(0) \gamma V(N)} L$, and so by Proposition 3.2 there is $a_{1} \in\left(x_{2}, \cdots, x_{n}\right)$ such that $x_{1}+a_{1} \notin \mathrm{U}_{L \in \operatorname{Min}(0) \backslash V(M)}{ }^{L}$.
Let $\quad y_{1}:=x_{1}+a_{1}$. Then $\quad y_{1} \in N$ and $\operatorname{Rad}(N)=\operatorname{Rad}\left(\left(y_{1}, x_{2}, \cdots, x_{n}\right)\right)$. We shall construct the sequence $\quad y_{1}, \cdots, y_{n-1} \in N$ such that $\operatorname{Rad}(N)=\operatorname{Rad}\left(\left(y_{1} \cdots y_{n-1}, x_{n}\right)\right) \quad$ and $y_{j} \notin \mathrm{U}_{L \in \operatorname{Min}\left(~\left(y_{1} \sim y_{i-1}\right)\right\} V(N)} L$, for each $1 \leq j \leq n-1$, by an inductive process. To do this end, assume that $1 \leq k<n-1$, and that we have already constructed elements y_{1}, \cdots, Y_{k} such that
$\operatorname{Rad}(N)=\operatorname{Rad}\left(\left(y_{1}, \cdots, y_{k}, x_{k+1}, \cdots, x_{n}\right)\right)$.
We show how to construct Y_{k+1}. To do this, as $k<n-1$ it follows that
$\operatorname{Min}\left(y_{1}, \cdots, y_{k}\right) \backslash V(N) \neq \emptyset$.
Therefore it follows from Lemma 4.1 and proposition 3.1 that
$\left.N \Phi \mathrm{U}_{L \in \operatorname{Min}\left(y_{1}-y_{k}\right)}\right) Y(N) L$.
Therefore
$\left.\left(y_{1}, \cdots, y_{k}, x_{k+1}, \cdots, x_{n}\right) \nsubseteq \mathrm{U}_{L \in \operatorname{Min}\left(y_{1} \cdots y_{k}\right)}\right) Y(N) L$, and so

UCT Journal of Research in Science, Engineering and Technology
by Proposition 3.2 there is $a_{k+1} \in\left(y_{1}, \ldots, y_{k}, x_{k+2}, \ldots, x_{n}\right)$ such that
$x_{k+1}+a_{k+1} \notin \mathrm{U}_{L \in \operatorname{Min}\left(y_{1}-y_{k}\right) Y \mathrm{~V}(M)} L$.
Let $y_{k+1}:=x_{k+1}+a_{k+1}$. Then $y_{k+1} \in N$ and $\operatorname{Rad}(N)=\operatorname{Rad}\left(\left(y_{1}, \cdots, y_{k}, y_{k+1}, x_{k+2}, \cdots, x_{n}\right)\right)$.This
completes the inductive step in the construction. Now it is easy to see that $\operatorname{Min}\left(y_{1}, \cdots, y_{n-1}\right) \backslash V(N) \neq \emptyset$. Also using an induction argument we can deduce that for any $1 \leq j \leq n$ 图 -1 and any $L \in \operatorname{Min}\left(y_{1}, \cdots, y_{j}\right) \vee V(N)$ we have $h t(L) \geq j$. Consequently, since there exists a prime submodule L of M which $L \in \operatorname{Min}\left(y_{1}, \cdots, y_{n-1}\right) \backslash V(N)$ it follows that $n-1 \leq h t(L) \leq \operatorname{dim} \operatorname{Spec}_{R}(M)=d$. Which implies that $n \leq d+1$, as required.

References

[1] S. Abu-Saymeh, On dimensions of finitely generated modules, Comm. Alg. 23(1995), 1131-1144.
[2] K. Bahmanpour, A. Khojali and R. Naghipour A note on minimal prime divisors of an ideal, Algebra Colloq. 18(2011), 727-732.
[3] M. Behboodi, A generalization of the classical Krull dimension for modules, J. Algebra. 305(2006), 11281148.
[4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Univ. Press, Cambridge, UK, 1993.
[5] J. Dauns, Prime modules, J. Reine Anegew. Math. 298(1978), 156-181.
[6] J. Jenkins and P. F. Smith, On the prime radical of a module over commutative ring, Comm. Alg. 20(1992), 3593-3602.
[7] O. A. Karamzadeh, The Prime Avoidance Lemma revisited, Kyungpook Math. J. 52(2012), 149-153.
[8] C. P. Lu, Unions of prime submodules, Houston J. Math. 23, no.2(1997), 203-213.
[9] K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow math. J. 39(1997), 285-293.
[10] S. H. Man and P. F. Smith, On chains of prime submodules, Israel J. Math. 127(2002), 131-155.
[11] A. Marcelo and J. Munoz Maque, Prime submodules, the discent invariant, and modules of finite length, J. Algebra 189(1997), 273-293.
[12] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.
[13] R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23(1993), 1041-1062.
[14] A. A. Mehrvarz, K. Bahmanpour and R. Naghipour, Arithmetic rank, cohomological dimension and filter regular sequences, J. Alg. Appl. 8(2009), 855-862.
[15] J. J. Rotman, An introduction to homological algebra, Pure Appl. Math., Academic Press, New York, 1979.
[16] D. Pusat-Yilmaz and P. F. Smith, Chain conditions in modules with krull dimension, Comm. Alg. 24(13)(1996), 4123-4133.

[^0]: * Corresponding author: y.shahvalizadeh@yahoo.com

 Peer review under responsibility of UCT Journal of Research in Science, Engineering and Technology

