

Available online at http://UCTjournals.com UCT Journal of Research in Science, Engineering and Technology UCT. J. Resea. Scien. Engineer. Techno. (UJRSET) 09-16 (2017)

CHAINS AND UNIONS OF PRIME SUBMODULES

YASOUB SHAHVALIZADEH

Department of Mathematics, Islamic Azad University of Ardabil Branch, Ardabil, Iran. E-mail address

Original Article:

Received 30 April. 2017 Accepted 30 July. 2017 Published 08 Sep. 2017

ABSTRACT

Abstract. Let R be a commutative ring with identity and let M be a unital R-module. In this paper we study the various properties of prime submodules. Also we give a new equivalent conditions for a minimal prime submodules of an R-module to be a finite set, whenever R is a Noetherian ring. Finally we prove the Prime avoidance Theorem for modules in different states.

Keyword: CHAINS UNIONS PRIME SUBMODULES

* **Corresponding author:** *y.shahvalizadeh@yahoo.com*

Peer review under responsibility of UCT Journal of Research in Science, Engineering and Technology

1. Introduction

Throughout this paper, let R be a commutative ring (with identity) and M be a unital R-module. A proper submodules N of M with $N :_{R} M = p$ is said to be prime or *p*-prime (p a prime ideal of *R*) if $rx \in N$ for $r \in R$ and $x \in R$ *M* implies that either $x \in N$ or $r \in p$. Another equivalent notion of prime submodules was first introduced and systematically studied in [5]. Prime submodules have been studied by several authors; see, for example, [3], [1], [6], [8], [9], [10], [11] and [13]. In section 2 we study the chain of prime submodules and we shall improve the results given in [10]. The Prime avoidance Theorem states that if an ideal I of a ring is contained in the union of finite number of prime ideals, then I must be contained in one of them. This result's generalization for the non-commutative case has been proved in [7]. In section 2, we generalize this theorem for modules in different states. In section 4 we prove some new results about the finiteness of the set of minimal prime submodules of an R-module. Also we introduce the concept of arithmetic rank of a submodule of a Noetherian module and we give an upper bound for it. Throughout, for any ideal b of R, the radical of b, denoted by Rad(b), is defined to be the set $\{x \in R : x^n \in b \text{ for some } b \}$ $n \in N$ and we denote $\{p \in Spec(R) : p \supseteq b\}$ by V(b), where Spec(R) denotes the set of all prime ideals of R. The symbol \subseteq denotes containment and \subseteq denotes proper containment for sets. If N is a submodule of M, we write N $\leq M$. We denote the annihilator of a factor module M/N of M by $(N:_{R}M)$. The set of all maximal ideals of R is denoted by Max(R). For any ideal I of a ring R and for any *R*-module M, $\Gamma_{I}(M)$ is defined to be the submodule of M consisting of all elements annihilated by some power of I, i.e., $\bigcup_{n=1}^{\infty} (0: M^n)$. For any unexplained notation and terminology we refer the reader to [4], [12] and [15].

2. Chains of prime submodules

The results of this section are generalizations of the some results given in [10] and [3]. First we need the following definition.

Definition 2.1. Let \mathbb{R} be a Noetherian ring and M be a finitely generated *R*-module. For each $p \in \text{Spec}(R)$ we define $\lambda_p(M)$ as following:

$$\lambda_p(M) = \dim_{R_p/pR_p}(M_p/pM_p).$$

Remark 2.2. Let R be a Noetherian ring and M be a finitely generated R-module. For each $p \in \text{Spec}(R), \lambda_p(M)$ is the number of elements of any minimal generator set of the *Rp*-module *Mp* and so $\lambda_p(M) < \infty$. Also we have $\lambda_p(M) = 0$ if and only if $p \notin \text{Supp}(M)$. Moreover, for any pair $q \subseteq p$ of prime ideals of R it is easy to see that $\lambda_q(M) \leq \lambda_p(M)$.

The following description of prime submodules will be useful in this paper.

Lemma 2.3. Let \mathbb{R} be a Noetherian ring and $p \in \text{Spec}(\mathbb{R})$. Let M be a finitely generated R-module and N be a proper submodule of M. Then the followings are equivalent:

(i) N is *p*-prime submodule of M.

(ii) $Ass_{R}(M/N) = \{p\} and (N:_{R} M) = p.$

(iii) $(N :_{\mathbb{R}} x) = p$, for each $x \in M/N$.

Proof. Easily follows from definition.

The following theorem is the first main result of this paper and a generalization of [10, Lemma 2.6].

Theorem 2.4. Let *R* be a Noetherian ring and $p \in \text{Supp}(M)$. Let M be a finitely generated R-module. Then the following statements hold:

(i) The length of any chain of *p*-prime submodules of *M* is bounded from above by $\lambda_{p}(M) - 1$.

(ii) There is a chain of p-prime submodules of M, which is of length $\lambda_{p}(M) - 1$.

(iii) Any saturated maximal chain of p-prime submodules of *M* is of length $\lambda_p(M) - 1$.

Proof. (i) Let $n := \lambda_p(M)$. Then it follows from the hypothesis $p \in \text{Supp}(M)$ that n > 0. Suppose the contrary be true. Then there exist a chain of *p*-prime submodules of M as:

$$N_0 \subset N_1 \subset \cdots \subset N_n$$

By Lemma 2.3 we have $p \in \text{Supp}(M/N_n)$ and so $l_{R_n}((M/N_n)_p) \ge 1$. On the other hand since by assumption we have $(N_0 :_R M) = p$, it follows that there is an exact sequence

 $M/pM \rightarrow M/N_0 \rightarrow 0$.

Hence we have the following exact sequence:

 $(M/pM)_p \rightarrow (M/N_0)_p \rightarrow 0.$

Therefore, it follows from definition that

 $l_{R_p}((M/N_0)_p) = dim_{R_p/pR_p}((M/N_0)_p) \le \lambda_p(M) = n.$

On the other hand for each $0 \le i \le n - 1$ there is an exact sequence

 $0 \rightarrow N_{i+1}/N_i \rightarrow M/N_i$.

But, since $N_{i+1}/N_i \neq 0$, it follows from Lemma 2.3 and above exact sequence that

 $\emptyset \neq \operatorname{Ass}_{R}(N_{i+1}/N_{i}) \subseteq \operatorname{Ass}_{R}(M/N_{i}) = \{p\},\$ Which implies that $Ass_R(N_{i+1}/N_i) = \{p\}$. In particular $p \in \text{Supp}(N_{i+1}/N_i)$, and so $(N_{i+1}/N_i)_p \neq 0$. Consequently $l_{R_p}((N_{i+1}/N_i)_p) \ge 1$. Whence, we have $n = \sum_{i=0}^{n-1} 1 \le \sum_{i=0}^{n-1} l_{R_p}((N_{i+1}/N_i)_p) = l_{R_p}((N_n/N_0)_p) \le l_{R_p}((M/N_0)_p) - 1 \le n-1$

,Which is a contradiction.

(ii) Let $\lambda_p(M) = n$. Then n > 0. As $p \in \text{Supp}(M)$ it follows that $(pM :_R M) = p$. Therefore, $p \in Ass_R(M/pM)$. Let $N_0 = pM$, whenever $Ass_R(M/pM) = \{p\}$. In other case suppose

 $\operatorname{Ass}_{R}(M/pM) \setminus \{p\} := \{q_{1}, \cdots, q_{k}\}$

Let $I = \bigcap_{i=1}^{k} q_i$ and $N_0/pM := \Gamma_I(M/pM)$. Then we have

 $\operatorname{Ass}_{R}(M/N_{0}) = \operatorname{Ass}_{R}((M/pM)/\Gamma_{I}(M/pM)) = \operatorname{Ass}_{R}(M/pM)\setminus V(I)$.But, since for each $1 \leq j \leq k$ we have $\operatorname{Ann}_{\mathbb{R}}(M/pM) = p \subseteq q_j$ and $q_j \neq p$, it follows that $p \notin V(q_i)$. Therefore

 $p \notin \bigcup_{i=1}^{k} V(q_i) = V(\bigcap_{i=1}^{k} q_i) = V(I).$ Therefore

$$\operatorname{Ass}_{R}(M/N_{0}) = \operatorname{Ass}_{R}(M/pM) \setminus V(I) = \{p\},$$

Which results $\operatorname{Ann}_{R}(M/N_{0}) \subseteq p$. Therefore, we have $\mathbf{p} = (\mathbf{p}M :_{R} M) \subseteq (N_{0} :_{R} M) \subseteq \mathbf{p}$ and so $(N_{0} :_{R} M) = p$. Also as $\operatorname{Ass}_{R}(N_{0}/pM) = \operatorname{Ass}_{R}(\Gamma_{I}(M/pM)) = \operatorname{Ass}_{R}(M/pM) \cap V(I)$

It follows that $p \notin \text{Supp}(N_0/pM)$ and hence $(N_0/pM)_p = 0$. Now in both cases it follows from Lemma 2.3 that N_0 is a *p*-prime submodule of M. We shall construct the chain $N_0 \subset \cdots \subset N_{n-1}$ of *p*-prime submodules of M such that $l_{R_p}((N_{i+1}/N_i)_p) = 1$, for

 $l_{R_p}((M/L)_p) = l_{R_p}((M/N_0)_p) - l_{R_p}((L/N_0)_p) = l_{R_p}((M/L)_p) = l_{R_p}$

n - (1 + j) = n - j - 1 > 0.

Therefore, $(M/L)_p \neq 0$. Now it is easy to see that $(L:_R M) = p$, and so $p \in Ass_R(M/L)$. Let $N_{j+1} = L$ whenever $Ass_R(M/L) = \{p\}$. In other case suppose $Ass_R(M/L) \setminus \{p\} \coloneqq \{q_1', \cdots, q_t'\}$.

Let $J = \bigcap_{i=1}^{t} q'_{i}$ and $N_{j+1}/L := \Gamma_{J}(M/L)$. Then we have $\operatorname{Ass}_{R}(M/N_{j+1}) = \operatorname{Ass}_{R}((M/L)/\Gamma_{J}(M/L)) = \operatorname{Ass}_{R}(M/L) \setminus V$

But, since for each $1 \le i \le t$ we have $\operatorname{Ann}_{R}(M/L) = p \subseteq q_{i}'$ and $p \ne q_{i}'$, it follows that $p \notin V(q'_{i})$. Therefore,

 $\operatorname{Ass}_{\mathbb{R}}(M/N_{j+1}) = \operatorname{Ass}_{\mathbb{R}}(M/L) \setminus V(J) = \{p\},\$

Which results $\operatorname{Ann}_{R}(M/N_{j+1}) \subseteq p$. Therefore, we have $p = (L :_{R} M) \subseteq (N_{j+1} :_{R} M) \subseteq p$ and so $(N_{j+1} :_{R} M) = p$. Also as $\operatorname{Ass}_{R}(N :_{R}(L)) = \operatorname{Ass}_{R}(T_{k}(M/L)) = \operatorname{Ass}_{R}(M/L) \cap V(L)$

 $\operatorname{Ass}_{R}(N_{j+1}/L) = \operatorname{Ass}_{R}(\Gamma_{J}(M/L)) = \operatorname{Ass}_{R}(M/L) \cap V(J),$

it follows that $p \notin \text{Supp}(N_{j+1}/L)$ and hence $(N_{j+1}/L)_p = 0$. Whence,

 $l_{R_p}((N_{j+1}/N_j)_p) = l_{R_p}((N_{j+1}/L)_p) + l_{R_p}((L/N_j)_p) = 1 + 0 = 1$

Now in both cases it follows from Lemma 2.3 that N_{j+1} is a *p*-prime submodule of *M* such that $l_{R_p}((N_{j+1}/N_j)_p) = 1$. this completes the inductive step in the construction.

(iii) Let $\lambda_p(M) = n$ and $N_0 \subset \cdots \subset N_K$ be a saturated maximal chain of *p*-prime submodules of *M*. We show that k = n - 1. By (i) we have $k \leq n - 1$. Since by assumption this cain is maximal it follows from the proof of (ii) that $l_{R_p}((M/N_k)_p) = 1$. Now suppose the contrary be true. Then the set

 $E := \{N : N \text{ is a } p - \text{ prime submodule of } M\},\$

has a unique minimal element $N' \coloneqq \bigcap_{N \in \mathbb{E}} N$ with respect to " \subseteq ". So it follows from hypothesis that $N_0 = N'$. Also using (i) it follows from the proof of (ii) that $(N_0/pM)_p = 0$. Therefore,

$$l_{R_p}((N_k/N_0)_p) = n - 1.$$

Now suppose the contrary be true and k < n-1. Then we deduce that there is $0 \le j \le k \square - 1$, such that $l_{R_p}((N_{j+1}/N_j)_p) \ge 2$. Then there is $x \in N_{j+1} \setminus N_j$. By Lemma 2.3 we have $(N_j + Rx)/N_j \cong R/p$ and so each $0 \le i \le n-2$, by an inductive process. To do this end, assume $0 \le j < n-1$, and that we have already constructed $N_0 \subset N_1 \subset \cdots \subset N_j$. We show how to construct N_{j+1} . To do this, since by definition $M \ne N_j$ it follows that there is an element $x \in M \setminus N_j$. Let $L := Rx + N_j$. In view of Lemma 2.3 we have $L/N_j \cong R/p$. In particular we have $l_{R_p}((L/N_j)_p) = 1$. By inductive hypothesis we have

$$(pM)_p) - [l_{R_p}((L/N_j)_p) + \sum_{i=1}^{j-1} l_{R_p}((N_{i+1}/N_i)_p)] = l_{R_p}(((N_j + Rx)/N_j))_p = 1.$$
Let $L := N_j + Rx$. Since N_{j+1}/L is the unique minimal element of the set $\{N/L : N/L \text{ is a } p - prime \text{ submodule of } M/L\},$ again using (i) it follows from the proof of (ii) that $(N_{j+1}/L)_p = 0$. Thus we have $2 \le l_{R_p}((N_{j+1}/N_j)_p) = l_{R_p}((N_{j+1}/L)_p) + l_{R_p}((L/N_j)_p) = 0 + 1 = 1,$ which is a contradiction. This completes the proof. $V(J)$ Now we need the following definitions.

Definition 2.5. Let R be a Noetherian ring and M be a finitely generated R-module. For each p-prime submodule N of M we define p-height of N as:

 $p - ht(N) := \sup\{k \in N_0 : \exists N_0 \subset \cdots \subset N_K = N; \text{ with } N_i \in Spec_R^p(M), \forall i\}$ where $Spec_R^p(M)$ denotes to the set of all *p*-prime submodules of *M* as an *R*-module.

Definition 2.6. Let R be a Noetherian ring and M be a finitely generated R-module. For each p-prime submodule N of M we define height of N as:

 $ht(N) := \sup\{k \in N_0 : \exists N_0 \subset \cdots \subset N_K = N; \text{ with } N_i \in \operatorname{Spec}_R(M), \forall i\}$

where $Spec_R(M)$ denotes to the set of all prime submodules of M as an R-module.

Definition 2.7. Let R be a Noetherian ring and M be a finitely generated R-module.

Then we define $\operatorname{dim}\operatorname{Spec}_{R}(M)$ as:

 $\dim \operatorname{Spec}_{R}(M) := \sup \{ ht(N) : N \in \operatorname{Spec}_{R}(M) \}.$

The following result is an immediately consequence of Theorem 2.4.

Corollary 2.8. Let R be a Noetherian ring and M be a finitely generated R-module and N be a p-prime submodule of M. Then

 $p - ht(N) = l_{R_p}((N/pM)_p) = \dim_{R_p/pR_p}(N_p/pM_p).$

Proof. Let k := p - ht(N). Then there is saturated chain of *p*-prime submodules of *M* as $N_0 \subset \cdots \subset N_K = N$. By the proof of Theorem 2.4 this chain can be extended to a maximal saturated chain of *p*-prime submodules of *M* as $N_0 \subset \cdots \subset N_K = N \subset \cdots \subset N_{n-1}$,

Where $\lambda_p(M) = n$. Then by the proof of Theorem 2.4 we have $(N_0/pM)_p = 0$ and $l_{R_p}((N_{i+1}/N_i)_p) = 1$, for each $0 \le i < n - 2$. Now clearly the assertion holds.

As an application of Theorem 2.4 we prove the following.

Theorem 2.9. Let R be a Noetherian ring and M be a finitely generated R-module and N be a p-prime submodule of M. Then

 $ht(N) \le (\lambda_p(M))(\dim_{R_p}(M_p)) < \infty.$

Proof. Let $N_k \subset \cdots \subset N_0 = N$ be a chain of prime submodules of M, such that for each $0 \le i \le k$, N_i is p_i -prime, where $p_0 = p$. Then it easily follows from definition that

 $p_k \subseteq \cdots \subseteq p_0 = p$.

Therefore, the set $\{p_i\}_{i=0}^k$ has at most $\dim_{R_p}(M_p)$ element. (Note that $p_i \in \text{Supp}(M)$, for all $0 \le i \le k$). Let

 $\{p_i\}_{i=0}^k = \{q_0 = p, \cdots, q_t\},$ where $t \leq dim_{R_p}(M_p)$ and $p = q_0 \supset \cdots \supset q_t$. Let $A_j := Spec_R^{q_j}(M) \cap \{N_i\}_{i=0}^k, \text{ for each } 0 \leq j \leq t. \text{ Then}$ by Theorem 2.4 the set A_j has at most $\lambda_{q_j}(M)$ element.
But $\lambda_{q_j}(M) \leq \lambda_p(M)$, because $q_j \subseteq p$. Therefore as

 $\bigcup_{j=1}^{t} A_{j} = \{N_{i}\}_{i=0}^{k},$

it follows that $k \leq t\lambda_p(M) \leq (\dim_{R_p}(M_p))\lambda_p(M)$. Which implies that

 $ht(N) \le (\lambda_p(M))(\dim_{R_p}(M_p)) < \infty,$

as required.

3. Prime avoidance Theorem

The results of this section which will be useful in the next section improve some well known results given in [8]. **Proposition 3.1.** Let *R* be ring and *M* be a non-zero *R*-module and *N* be a submodule of *M*. Let p_1, \dots, p_n be distinct prime ideals of *R*. Let for each $1 \le i \le n$, N_i be a p_i -prime submodule of *M*. If $N \subseteq \bigcup_{i=1}^n N_i$, then $N \subseteq N_j$ for some $1 \le j \le n$.

Proof. We do induction on *n*. The case n = 2 is easy. Now let $n \ge 3$ and the case n - 1 is settled. By definition for each $1 \le i \le n$ we have $p_i = (N_i : M)$. From the hypothesis $N \subseteq \bigcup_{i=1}^{n} N_i$ it follows that $N = \bigcup_{i=1}^{n} (N_i \cap N)$. Now let the contrary be true. Then $N \not\subseteq N_i$ and hence $(N_i \cap N) \neq N$, for any $1 \leq i \leq n$. Also from the inductive hypothesis it follows that $N \neq \bigcup_{i \in \{\{1,\dots,n\}\} \setminus \{k\}} (N_i \cap N)$ for each $1 \le k \le n$ and so $(N_k \cap N) \not\subseteq \bigcup_{i \in (\{1, \dots, n\}) \setminus \{k\}} (N_i \cap N)$. Let q be a minimal element of the set $\{p_1, \dots, p_n\}$ with respect to " \subseteq ". Then $p_i \not\subseteq q$ for each $p_i \in (\{p_1, \dots, p_n\} \setminus \{q\})$. Without loss of generality we may assume that $q = p_n$. Let $J_i := (N_i :_R N)$, for all $i = 1, \dots, n$. Then from the definition it follows that $p_i \subseteq J_i$, for all $i = 1, \dots, n$. On the other hand for each $x \in N$ and $r \in R$, if $rx \in (N_i \cap N)$ and $x \notin (N_i \cap N)$, then $rx \in N_i$ and $x \notin N_i$. Therefore it follows from the definition that $r \in p_i$. So $rM \subseteq N_i$, and consequently, $rN \subseteq (N_i \cap N)$. As $(N_i \cap N) \neq N$ it follows that there exists an element $y \in (N \setminus (N_i \cap N))$. Now for each $s \in J_i$ we have $sy \in (N_i \cap N) \subseteq N_i$ and $y \notin N_i$. So it follows from the definition that $s \in p_i$. Therefore, $(N_i:RN) = J_i = p_i = (N_i:RM)$. But it is easy to see

that $(N_i :_R N) = ((N_i \cap N) :_R N)$. Thus for each $1 \le i \le n$,

 $N_i \cap N$ is p_i -prime submodule of N. Therefore without loss of generality we may assume that $N = M = \bigcup_{i=1}^{n} N_i$ and $N_n \not\subseteq \bigcup_{i=1}^{n-1} N_i$. Next let $T := \bigcap_{i=1}^n N_i$. Then it is not to see that for each $1 \le i \le n$, N_i/T is p_i -prime submodule of M/T and $M/T = \bigcup_{i=1}^{n} N_i/T$. Therefore, without loss of generality we may assume $M = \bigcup_{i=1}^{n} N_i$ and $\bigcap_{i=1}^{n} N_i = 0$ and $N_n \not\subseteq \bigcup_{i=1}^{n-1} N_i$. Then there is an exact sequence $0 \rightarrow M \rightarrow \bigoplus_{i=1}^{n} M/N_i$ which implies that $\bigcap_{i=1}^{n} p_i = \operatorname{Ann}_{\mathbb{R}} (\bigoplus_{i=1}^{n} M/N_i) \subseteq \operatorname{Ann}_{\mathbb{R}} (M)$. On the other each $1 \leq i \leq n$ hand for we have $\operatorname{Ann}_{\mathbb{R}}(M) \subseteq (N_i :_{\mathbb{R}} M) = p_i.$ So $\operatorname{Ann}_{\mathbb{R}}(M) \subseteq \bigcap_{i=1}^{n} p_i$. $\operatorname{Ann}_{\mathbb{R}}(M) = \bigcap_{i=1}^{n} p_i$. Now if we Hence have $\bigcap_{i=1}^{n-1} N_i = 0$, then there is an exact sequence

 $0 \to M \to \bigoplus_{i=1}^{n-1} M/N_i$ which implies that $\bigcap_{i=1}^{n-1} p_i = \operatorname{Ann}_{\mathbb{R}} (\bigoplus_{i=1}^{n-1} M/N_i) \subseteq \operatorname{Ann}_{\mathbb{R}} (M) = \bigcap_{i=1}^{n} p_i \subseteq p_n$. So $p_t \subseteq p_n$, for some $1 \le t \le n-1$, which is a contradiction. So $\bigcap_{i=1}^{n-1} N_i \ne 0$. Then there is an element $0 \ne a \in \bigcap_{i=1}^{n-1} N_i$. As $\bigcap_{i=1}^{n} N_i = 0$, it follows that $a \notin N_n$. On the other hand since $N_n \notin \bigcup_{i=1}^{n-1} N_i$, it follows that there is an element $b \in N_n$ such that $b \notin \bigcup_{i=1}^{n-1} N_i$. Now as $a + b \in \bigcup_{i=1}^{n} N_i$, it follows that $a + b \in N_k$ for some $1 \le k \le n$, which is a contradiction. This completes the inductive step.

Remark: Proposition 3.1 does not hold in general. For example let $p \ge 2$ be a prime number and $2 \le n \in \mathbb{N}$. Let $R = \mathbb{Z}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$ and $M = \bigoplus_{i=1}^n \mathbb{Z}_p$ Let

 $\mathfrak{A} = \{N : N = Rx, \text{ for some } 0 \neq x \in M\}.$

Then \mathfrak{A} is a finite set that has at most 2^{p^n} element and for each $N \in \mathfrak{A}$, N is a $\{\overline{0}\}$ -prime submodules of M such that $M \subseteq \bigcup_{N \in \mathfrak{A}} N$. But $M \nsubseteq N$ for any $N \in \mathfrak{A}$.

The following proposition is a generalization of [12, Ex. 16.8].

Proposition 3.2. Let *R* be a ring, *M* a non-zero *R*-module, *N* a submodule of *M* and $x \in M$. Let p_1, \dots, p_n be distinct prime ideals of *R*. Let for each $1 \le i \le n, N_i$ be a p_i -prime submodule of *M*. If $N + Rx \nsubseteq \bigcup_{i=1}^n N_i$, then there exists $a \in N$ such that $a + x \notin \bigcup_{i=1}^n N_i$.

Proof. We use induction on *n*. Let n = 1. If $x \in N_1$ then $N \not\subseteq N_1$. So there is $a \in N \setminus N_1$ and it is easy to see that $a + x \notin N_1$. But if $x \notin N_1$, then by choosing $a = 0 \in N$ the assertion holds. Now suppose $n \ge 2$ and the case n - 1is settled. Let q be a minimal element of the set $\{p_1, \dots, p_n\}$ "⊆". with respect to Then p_i⊈q for each $p_i \in (\{p_1, \dots, p_n\} \setminus \{q\})$. Without loss of generality we may assume that $q = p_n$. Then it is easy to see that $\bigcap_{i=1}^{n-1} p_i \not\subseteq p_n$. By inductive hypothesis there is an element $b \in N$ such that $b + x \notin \bigcup_{i=1}^{n-1} N_i$. So the assertion hold for a = b, whenever $b + x \notin N_n$. So we may assume $b + x \in N_n$. Then we claim that $N \not\subseteq N_n$. Because, if $N \subseteq N_n$ then $x \in N_n$ and so $N + Rx \subseteq N_n \subseteq \bigcup_{i=1}^n N_i$, which is a contradiction. Therefore, there exists an element $c \in N \setminus N_n$. As $\bigcap_{i=1}^{n-1} p_i \notin p_n$ it follows that there exists an element $r \in (\bigcap_{i=1}^{n-1} p_i) \setminus p_n$. Then it easily follows from the definition of the p_n -prime submodule that $rc \notin N_n$. Moreover, since $r \in \bigcap_{i=1}^{n-1} p_i$ it follows from the definition that $rc \in \bigcap_{i=1}^{n-1} N_i$. Now it is easy to see that $rc + b + x \notin \bigcup_{i=1}^{n} N_i$. Therefore, the assertion hold for $a := rc + b \in N$. This completes the induction step.

Remark: Proposition 3.2 does not hold in general. For example let $p \ge 2$ be a prime number and $R = \mathbb{Z}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$ and $M = \mathbb{Z}_p \bigoplus \mathbb{Z}_p$. Let $N = (\overline{1}, \overline{0})\mathbb{Z}_p$, $x = (\overline{0}, \overline{1})$ and $N_i = (\overline{i}, \overline{1})\mathbb{Z}_p$, for $i = 0, \dots, p-1$. Then N_i is $\{\overline{0}\}$ -prime submodule of the *R*-module *M*, for all $i = 0, \dots, p-1$. Also as $(\overline{1}, \overline{0}) \in N + Rx$ and $(\overline{1}, \overline{0}) \notin \bigcup_{i=0}^{p-1} N_i$, it follows that $N + Rx \notin \bigcup_{i=0}^{p-1} N_i$. But for any $a \in N$ we have $a + x \in \bigcup_{i=0}^{p-1} N_i$.

Now we give an other aspects of prime avoidance Theorem in different states.

Proposition 3.3. Let *R* be a ring, *M* a non-zero *R*-module, *N* a submodule of *M* and $k \in \mathbb{N}$. Let for each $1 \le i \le k$, $n_i \in \mathbb{N}$ and for $1 \le i \le k$ and $1 \le j \le n_i$, the ideals $p_{i,j}$ be distinct elements of Spec(*R*). Let for each $1 \le i \le k$ and $1 \le j \le n_i$, $N_{i,j}$ be a $p_{i,j}$ -prime submodule of *M*. Let for each $1 \le i \le k$, $N_i = \bigcap_{j=1}^{n_i} N_{i,j}$. If $N \subseteq \bigcup_{i=1}^k N_i$, then $N \subseteq N_t$ for some $1 \le t \le k$.

Proof. Let the contrary be true. Then for each $1 \le i \le k$ we have $N \not\subseteq N_i$. Therefore there exists $1 \le s_i \le n_i$ such that $N \not\subseteq N_{i,s_i}$. But in this situation we have

 $N \subseteq \bigcup_{i=1}^{k} N_i \subseteq \bigcup_{i=1}^{k} N_{i,s_i}$.

Consequently, it follows from proposition 3.1 that there is $1 \le l \le k$, such that $N \subseteq N_{l,s_l}$, which is a contradiction.

Proposition 3.4. Let *R* be a ring, *M* a non-zero *R*-module, *N* a submodule of *M*, $\mathbf{x} \in M$ and $\mathbf{k} \in \mathbb{N}$. Let for each $1 \leq i \leq k$, $n_i \in \mathbb{N}$ and for $1 \leq i \leq k$ and $1 \leq j \leq n_i$, the ideals $p_{i,j}$ be distinct elements of Spec(*R*). Let for each $1 \leq i \leq k$ and $1 \leq j \leq n_i$, $N_{i,j}$ be a $p_{i,j}$ -prime submodule of *M*. Let for each $1 \leq i \leq k$, $N_i = \bigcap_{j=1}^{n_i} N_{i,j}$. If $N + Rx \notin \bigcup_{i=1}^k N_i$ then there exists $a \in N$ such that $a + x \notin \bigcup_{i=1}^k N_i$.

Proof. For each $1 \le i \le k$ we have $N + Rx \not\subseteq N_i$. Therefore there exists $1 \le s_i \le n_i$ such that $N + Rx \not\subseteq N_{i,s_i}$. But in this situation using proposition 3.1 we have

 $N + Rx \not\subseteq \bigcup_{i=1}^{k} N_{i,s_i}$.

Consequently, it follows from proposition 3.2 that there is $a \in N$, such that $a + x \notin \bigcup_{i=1}^{k} N_{i,s_i}$. But since $\bigcup_{i=1}^{k} N_i \subseteq \bigcup_{i=1}^{k} N_{i,s_i}$, it follows that $a + x \notin \bigcup_{i=1}^{k} N_i$, as required.

Proposition 3.5. Let R be a ring, I an ideal of R and $x \in R$. Let $J_1, \dots, J_n, (n \ge 1)$ be ideals of R such that for each $1 \le i \le n$ we have $Rad(J_i) = J_i$. If $I + Rx \nsubseteq \bigcup_{i=1}^n J_i$, then there exists an element $a \in I$ such that $a + x \notin \bigcup_{i=1}^{n} J_i$.

Proof. For each $1 \le i \le n$ we have $I + Rx \nsubseteq J_i$. Therefore for each $1 \le i \le n$, since $J_i = \bigcap_{q \in V(J_i)} q$ it follows that there exists $p_i \in V(J_i)$ such that $I + Rx \nsubseteq p_i$. But in this situation we have $I + Rx \nsubseteq \bigcup_{i=1}^n p_i$. Consequently, it follows from [12, Ex. 16.8] that there is $a \in I$, such that $a + x \notin \bigcup_{i=1}^n p_i$. But since $\bigcup_{i=1}^n J_i \subseteq \bigcup_{i=1}^n p_i$, it follows that $a + x \notin \bigcup_{i=1}^n J_i$, as required.

Before bringing the next result we need the following well known lemma.

Lemma 3.6. Let (R,m) be a commutative local ring such that R/m is infinite. Let M be an R-module and N_1, \dots, N_t be submodules of M such that $M = \bigcup_{i=1}^t N_i$. Then there exists $1 \le j \le t$, $M = N_i$.

Proof. The assertion follows using NAK Lemma.

Proposition 3.7. Let R be a commutative ring, M be an Rmodule and N_1, \dots, N_t be submodules of M such that $M = \bigcup_{i=1}^t N_i$. Then $\bigcap_{i=1}^t Supp M/N_i \subseteq Max(R)$.

Proof. Suppose the contrary be true. Then there exists $p \in (\bigcap_{i=1}^{t} Supp M/N_i) \setminus Max(R)$. So R/p is an integral domain but not a field and therefore R_p/pR_p is infinite. By hypothesis and Proposition 3.6 there exists $1 \le j \le t$ such that $(M/N_j)_p = 0$ and so $p \notin Supp M/N_j$ which is a contradiction.

Corollary 3.8. Let R be a commutative ring and $p \in Spec(R) \setminus Max(R)$. Let M be an R-module and N_1, \dots, N_t be p-prime submodules of M and N a submodule of M such that $N \subseteq \bigcup_{i=1}^t N_i$. Then there exists $1 \leq j \leq t$ such that $N \subseteq N_j$.

Proof. Let for any $1 \le j \le t$, $N \not\subseteq N_j$. Then for all $1 \leq j \leq t$, we have $N \cap N_j \neq N$. Since $pM \subseteq N_j$, it follows that $pN \subseteq N_i$ and so $pN \subseteq N \cap N_i$. Hence $p \subseteq (N \cap N_i:N)$. On the other hand there exists $x \in N \setminus N \cap N_i$ and so $x \notin N_i$. Let $r \in (N_i \cap N; N)$. Then $rx \in N_i \cap N \subseteq N_i$ and $x \notin N_i$, so $r \in (N_i:M) = p$. Consequently $(N_i \cap N:N) \subseteq p$ and so $(N_i \cap N:N) = p$. Now it is easy to show that $N_i \cap N$ is a *p*-prime submodule $N \subseteq \bigcup_{i=1}^{t} N_i$ it of Ν. Since follows that Ν $= \bigcup_{i=1}^{t} (N \cap N_i)$. But in this case $p \in \bigcap_{i=1}^{t} Supp (N/N_i \cap N)$. Since $p \in Spec(R) \setminus Max(R)$ this is impossible by Proposition 3.7.

Proposition 3.9. Let R be a commutative ring and $p \in Spec(R)$ such that R/p infinite. Let M be an Rmodule and N_1, \dots, N_t be p-prime submodules of M and Na submodule of M such that $N \subseteq \bigcup_{i=1}^t N_i$. Then there exists $1 \le j \le t$ such that $N \subseteq N_i$.

Proof. If $p \notin Max(R)$, the assertion follows from Corollary 3.8. So let $p \in Max(R)$ and for all $1 \le i \le t$, we have $N \notin Ni$. Hence for any $1 \le j \le t$, there exists $x_j \in N \setminus N_j$. Set $N' = (x_1, \dots, x_t) \subseteq N$ and so we have $N'/pN' = \bigcup_{i=1}^t ((N' \cap N_i) + pN')/pN'$. Since R/p is

infinite, there exists $1 \le j \le t$ such that $N'/pN' = ((N' \cap N_j) + pN')/pN'$. This implies that $N' = (N' \cap N_j) + pN' \subseteq pM + N_j = N_j$. Hence $N' \subseteq N_j$ which is a contradiction.

Proposition 3.10 Let R be a commutative ring and $p \in Spec(R)$ such that R/p infinite. Let M be an Rmodule and N_1, \dots, N_t be p-prime submodules of M and Na submodule of M. Let $x \in M$ such that $N + Rx \notin \bigcup_{i=1}^t N_i$. Then there exists $a \in N$ such that $a + x \notin \bigcup_{i=1}^t N_i$.

Proof. It is certainly true for t = 1. Let t > 1 and the result has been proved for $t \square - 1$. If $N \subseteq \bigcup_{i=1}^{t} N_i$ then by Proposition 3.9 there exists $1 \leq j \leq t$, such that $N \subseteq N_i$. Without loss of generality we may assume that j = t. By induction hypothesis there exists $b \in N$ such that $b + x \notin \bigcup_{i=1}^{t-1} N_i$. Since $b + x \notin N_t$ it follows that $b + x \notin \bigcup_{i=1}^{t} N_i$ and so the assertion follows. Now suppose that $N \not\subseteq \bigcup_{i=1}^{t} N_i$, then there exists $c \in N \setminus \bigcup_{i=1}^{t} N_i$. In this case if $x \notin \bigcup_{i=1}^{t} N_i$ we set a = 0and if $\mathbf{x} \in \bigcap_{i=1}^{t} N_i$ then we set a = c. Now suppose that the above conditions are not true. We may assume that there exists $1 \le k \le t-1$ such that $x \in \bigcap_{i=1}^k N_i$ and $x \notin \bigcup_{i=k+1}^{t} N_i$. Since R/p is infinite, so there exist $t - \mathbb{Z}k + 1$ non-zero distinct elements in R/p such as $s_1 + p, \cdots, s_{t-k+1} + p$. Set $A = \{s_i c + x \mid i = 1, \dots t - k + 1\}.$ If there exists an element $s_i c + x$ in A such that $s_i c + x \notin \bigcup_{i=1}^t N_i$ then the proof is complete. Otherwise, for each $1 \le l \le t - k + 1$, there is $1 \le j \le t$ such that $s_i c + x \in N_j$. If $1 \le j \le k$ then $s_l \in p$ and so $s_l + p = p$ which is a contradiction. So $k+1 \leq j \leq t$ and hence $A \subseteq \bigcup_{i=k+1}^{t} N_i$. Whence, according to the Dirichlet drawer principle, there exists $k+1 \le j \le t$ and $1 \le l_1 < l_2 \le t-k+1$ such that $s_{l_1}c + x$ and $s_{l_2}c + x$ belong to N_j . Therefore $s_{l_1} + p = s_{l_2} + p$ which is a contradiction.

4. Minimal prime submodules

The following lemma is needed in the proof of the first main result of this section. Note that in the sequel for any submodule B of an R-module M, the set of all minimal prime submodules of M over B is denoted by Min(B). Moreover, we denote Min(0) by Min(M). Also, V(B) is defined as follows:

 $V(B) = \{N \in \operatorname{Spec}_{R}(M) : N \supseteq B\}.$

Lemma 4.1. Let R be a commutative ring and $p,q \in Spec(R)$. Let M be an R-module and $N_1, N_2 \in Min M$ be respectively p-prime and q-prime submodules. Then $N_1 \neq N_2$ if and only if $p \neq q$.

Proof. If $p \neq q$ then obviously $N_1 \neq N_2$. Conversely, Let $N_1 \neq N_2$ but p = q. Since $L_1 = \bigcap_{L \in Spec_R^q(M)} L$ and $L_2 = \bigcap_{L \in Spec_R^q(M)} L$ it follows that L1 = L2 which is a contradiction.

Definition 4.2. Let M be an R-module and B be a submodule of M. Set

 $D(B) := \{N \in Min(B) : N \text{ is not finitely generated } R - module\}$ The minimal prime submodules of an *R*-module *M* has been studied in [16], for example see [16, Theorem 2.1]. In the next theorem we present a new conditions that an *R*module *M* has only a finite number of minimal prime submodules, whenever *R* is a Noetherian ring, which is a generalization of [2, Theorem 2.1].

Theorem 4.3. Let R be a Noetherian ring, M be an R-module and B be a submodule of M. Then the following statements are equivalent:

(1) Min(B) is finite.

(2) For every $\mathfrak{P} \in \operatorname{Min}(B)$ there exists a finitely generated submodule $K_{\mathfrak{P}}$ of \mathfrak{P} such that $|V(K_{\mathfrak{P}}) \cap \operatorname{Min}(B)| < \infty$.

(3) For every $\mathfrak{P} \in \operatorname{Min}(B)$ there exists a finitely generated submodule $N_{\mathfrak{P}}$ of \mathfrak{P} such that $V(N_{\mathfrak{P}}) \cap \operatorname{Min}(B) = {\mathfrak{P}}.$

(4) For every $\mathfrak{P} \in Min(B)$, $\mathfrak{P} \not\subseteq \bigcup_{L \in Min(B) \setminus \{\mathfrak{P}\}} L$.

(5) For every $\mathfrak{P} \in Min(B)$ there exists an element $x_{\mathfrak{P}} \in \mathfrak{P}$ of \mathfrak{P} such that $V(Rx_{\mathfrak{P}}) \cap Min(B) = {\mathfrak{P}}.$

(6) For every $\mathfrak{P} \in \mathbb{D}(B)$, $\mathfrak{P} \not\subseteq \bigcup_{L \in Min(B) \setminus \{\mathfrak{P}\}} L$.

(7) For every $\mathfrak{P} \in \mathbb{D}(B)$ there exists an element $x_{\mathfrak{P}} \in \mathfrak{P}$ of \mathfrak{P} such that $V(Rx_{\mathfrak{P}}) \cap \operatorname{Min}(B) = {\mathfrak{P}}.$

(8) For every $\mathfrak{P} \in \mathbb{D}(B)$ there exists a finitely generated submodule $K_{\mathfrak{P}}$ of \mathfrak{P} such that $|V(K_{\mathfrak{P}}) \cap \operatorname{Min}(B)| < \infty$.

(9) For every $\mathfrak{P} \in \mathbb{D}(B)$ there exists a finitely generated submodule $N_{\mathfrak{P}}$ of \mathfrak{P} such that $V(N_{\mathfrak{P}}) \cap \operatorname{Min}(B) = {\mathfrak{P}}.$

Proof. Without loss of generality, we may assume that B = 0, $Spec_R(M) \neq \emptyset$ and consequently $Min(M) \neq \emptyset$. (1) \Rightarrow (2) Since Min(M) is finite, by Lemma 4.1 and Proposition 3.1, for every $\mathfrak{P} \in Min(M)$, $\mathfrak{P} \not\subseteq \bigcup_{L \in Min(M) \setminus \{\Psi\}} L$ and there exists $x \in \mathfrak{P} \setminus \bigcup_{L \in Min(M) \setminus \{\Psi\}} L$. Set $K_{\mathfrak{P}} = Rx$. Then $K_{\mathfrak{P}}$ is finitely generated and set $V(K_{\mathfrak{P}}) \cap Min(B) = \{\mathfrak{P}\}$ is finite.

(2) \Rightarrow (3) Let $\mathfrak{P} \in \operatorname{Min}(M)$ and $V(K_{\mathfrak{P}}) \cap \operatorname{Min}(M) = \{\mathfrak{P}, \mathfrak{P}_2, \dots, \mathfrak{P}_n\}$. Using Lemma 4.1 and Proposition 3.1 we can find an element $x \in \mathfrak{P} \setminus \bigcup_{i=2}^n \mathfrak{P}_i$. Let $N_{\mathfrak{P}} := K_{\mathfrak{P}} + Rx$. Then $N_{\mathfrak{P}}$ is finitely generated and $V(N_{\mathfrak{P}}) \cap \operatorname{Min}(M) = \{\mathfrak{P}\}$.

(3) \Rightarrow (1) Suppose the contrary be true. Then the set Min(M) is infinite. Let

 $A := \left\{ p \in \operatorname{Spec}(\mathbb{R}) : \operatorname{Spec}_{R}^{p}(M) \cap \operatorname{Min}(M) \neq \emptyset \right\}$ $E := \left\{ N \leq M : N \text{ is finitely generated and } V(N) \cap \operatorname{Min}(M) \neq \emptyset \text{ is a finite set.} \right\}$ $F := \left\{ L \leq M : \forall N \in E, N \not\subseteq L \right\}$

We show that there exists a maximal element K of F such that $(K:_R M)$ is a prime ideal. Since Min(M) is infinite, so the zero submodule of M belong to the F and therefore by Zorn's Lemma F has a maximal element. Let L be a maximal element of F. If $(L:_R M)$ be a prime ideal, we are through. If not, then it is clear that $(L:_R M) \neq R$. Let $q_1 \in Ass_R(R/(L:_R M))$. By the definition there exists

 $r \in R \setminus (L :_R M)$ such that $q_1 = ((L :_R M) : r)$ and therefore $q_1 r M \subseteq L$. Since $r \notin (L :_R M)$, it follows that there exists an element $x \in M$ such that $rx \notin L$. Now there exists $N \in E$ such that $N \subseteq L + Rrx$. In particular,

 $q_1N \subseteq L + q_1rx \subseteq L + q_1rM \subseteq L.$

Since q_1N is finitely generated, so $|V(q_1N) \cap Min(M)| = \infty$. But in this case for all $\mathfrak{P} \in (V(q_1N) \cap \operatorname{Min}(M) \setminus V(N) \cap \operatorname{Min}(M)),$ we have $q_1 N \subseteq \mathfrak{P}$ and $N \not\subseteq \mathfrak{P}$. Now if \mathfrak{P} be a p-Prime submodule, and $|V(q_1) \cap A| = \infty$ then $q_1 \subseteq p$ so Hence $|V(q_1N) \cap Min(M)| = \infty$. So for all $N \in E$, we have $N \not\subseteq q_1 M$ and therefore $q_1 M \in F$. Let

 $U := \{q \in V(q_1) : qM \in F\}$ Since R is Noetherian it follows that U has a maximal element, say q_2 . $q_2M \subseteq H$, for some maximal element H of F. We claim that $(H :_{R} M)$ is a prime ideal of R. If not, according to the above argument, there exists $q_3 \in Ass_R(R/(H:_R M))$ such that $q_3 M \in F$ and $q_2 \subseteq (H :_R M) \subseteq q_3$. By choosing of q_2 , we must have which is a contradiction. Therefore $q_2 = q_3$, $(H:_R M) = q_2$ is a prime ideal. Now we show that H is a q_2 -prime submodule. Otherwise there exist $x \in M \setminus H$ and $r \in R \setminus q_2$ such that $rx \in H.So$ $r \in Z_R(M/H) = \bigcup_{q \in Ass_R(M/H)} q$ and hence there exists $q' \in Ass_R(M/H)$ such that $r \in q'$. Consequently, $q_2 \subset q'$. On the other hand by definition $\mathbf{q}' = (H_{B}, y)$ for some $y \in M \setminus H$. Since $H \subset H + Ry$, it follows that there exists $N \in E$ such that $N \subseteq H + Ry$ and so $q'N \subseteq H$. According to the above argument, $|V(q'M) \cap Min(M)| = \infty$ which implies $q'M \in F$. Finally, we have $q_2 = (H :_R M) \subset q'$, which is a contradiction with the choosing of q_2 . Therefore H is a q_2 -prime submodule of M. Whence, H contains a minimal prime submodule of M such as \mathfrak{P} . By assumption there exists a submodule $N_{\mathfrak{V}}$ of \mathfrak{V} such that $N_{\mathfrak{V}} \subseteq \mathfrak{V} \subseteq H$ and $N_{\infty} \in E$, which is a contradiction. Therefore, Min(*M*)is

a finite set. Now the proof of $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ is complete.

(1) \Rightarrow (4) Follows from Lemma 4.1 and Proposition 3.1.

 $(4) \Rightarrow (1) \Leftrightarrow (5)$ Since $(5) \Leftrightarrow (4) \Rightarrow (3)$ is clear so we have $(1) \Leftrightarrow (4) \Leftrightarrow (5)$.

Now we have the following: $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$.

 $(4) \Rightarrow (6)$ Is clear.

(6) \Rightarrow (3) Since for every $\mathfrak{P} \in D(0)$, $\mathfrak{P} \not\subseteq \bigcup_{L \in Min(M) \setminus \{\mathfrak{P}\}} L$, it follows that there exists $x_{\mathfrak{P}} \in \mathfrak{P}$ such that $V(Rx_{\mathfrak{P}}) \cap Min(B) = \{\mathfrak{P}\}$. On the other hand for all $\mathfrak{P} \in (Min(M) \setminus D(0))$, we have $V(\mathfrak{P}) \cap Min(B) = \{\mathfrak{P}\}$, where \mathfrak{P} is finitely generated. So the assertion follows.

(6) \Leftrightarrow (7) and (1) \Rightarrow (8), (9) are clear.

(8), (9) \Rightarrow (3) Follow by a similar arguments as in (6) \Rightarrow (3).

The following results follow from Theorem 4.3.

Corollary 4.4. Let R be a Noetherian ring, M an R-module and B be a proper submodule of M. Then Min(B) is infinite

if and only if there exists $\mathfrak{P} \in D(B)$ such that $\mathfrak{P} \subseteq \bigcup_{L \in (Min(M) \setminus \{\mathfrak{P}\})} L$.

Proof. Follows immediately from Theorem 4.3.

Corollary 4.5. Let R be a Noetherian ring, M an R-module and B be a proper submodule of M such that any minimal prime submodule over B is finitely generated. Then Min(B) is finite.

Proof. Follows immediately from Theorem 4.3.

Definition 4.6. Let *R* be a Noetherian ring, $M \neq 0$ a finitely generated *R*-module and *N* be a proper submodule of *M*. Then *the radical of N* is defined as: Rad(*N*) = $\bigcap_{L \in \text{Min } N} L$.

Before bringing the next definition, recall that for any ideal I of a Noetherian ring, the *arithmetic rank* of I, denoted by ara(I), is the least number of elements of I required to generate an ideal which has the same radical as I, i.e.,

ara
$$(I) := \min\{n \in \mathbb{N}_0 : \exists x_1, \dots, x_n \in I \text{ with } \operatorname{Rad}((x_1, \dots, x_n)) = \operatorname{Rad}(I)\}$$

Definition 4.7. Let *R* be a Noetherian ring, $M \neq 0$ a finitely generated *R*-module and *N* be a proper submodule of *M*.

We define the *arithmetic rank* of *N*, as:

ara $(N) := \min\{n \in \mathbb{N}_0 : \exists x_1, \dots, x_n \in N \text{ with } \operatorname{Rad}((x_1, \dots, x_n)) = \operatorname{Rad}(N)\}$ The next theorem is a generalization of [14, Theorem 2.7].

Theorem 4.8. Let *R* be a Noetherian ring, $M \neq 0$ a finitely generated *R*-module and *N* be a proper submodule of *M*.

Then $\operatorname{ara}(N) \leq \dim \operatorname{Spec}_R(M) + 1$.

Proof. Let $d := \dim Spec_R(M)$. We may assume that d is finite. Now, suppose, to the contrary, that ara(N) > d + 1. Let n := ara(N). Since $n > d + 1 \ge 1$ it follows from the definition that there exist elements x_1, \dots, x_n in N such that $Rad(N) = Rad((x_1, \dots, x_n))$. As n > 0 it follows that $Min(0) \setminus V(N) \neq \emptyset$. Therefore it follows from Lemma 4.1 and proposition 3.1 that $N \not\subseteq \bigcup_{L \in Min(0) \setminus V(N)} L$.

 $(x_1, \dots, x_n) \not\subseteq \bigcup_{L \in Min(0) \setminus V(N)} L$, and so by Proposition 3.2 there is $a_1 \in (x_2, \dots, x_n)$ such that

$$x_1 + a_1 \notin \bigcup_{L \in \operatorname{Min}(0) \setminus V(N)} L.$$

 $y_1 \coloneqq x_1 + a_1$. Let Then $y_1 \in N$ and $\operatorname{Rad}(N) = \operatorname{Rad}((y_1, x_2, \dots, x_n))$. We shall construct the $y_1, \cdots, y_{n-1} \in N$ sequence such that $\operatorname{Rad}(N) = \operatorname{Rad}((y_1 \cdots y_{n-1}, x_n))$ and $y_j \notin \bigcup_{L \in Min((y_1, \dots, y_{i-1})) \setminus V(N)} L$, for each $1 \le j \le n-1$, by an inductive process. To do this end, assume that $1 \leq k < n-1$, and that we have already constructed elements y_1, \dots, y_k such that

 $Rad(N) = Rad((y_1, \dots, y_k, x_{k+1}, \dots, x_n)).$

We show how to construct y_{k+1} . To do this, as k < n-1 it follows that

 $Min(y_1, \dots, y_k) \setminus V(N) \neq \emptyset.$

Therefore it follows from Lemma 4.1 and proposition 3.1 that

$$N \not\subseteq \bigcup_{L \in Min(y_1, \dots, y_k) \setminus V(N)} L$$

Therefore

$$(y_1, \dots, y_k, x_{k+1}, \dots, x_n) \not\subseteq \bigcup_{L \in Min(y_1, \dots, y_k) \setminus V(N)} L$$
, and so

by Proposition 3.2 there is $a_{k+1} \in (y_1, \dots, y_k, x_{k+2}, \dots, x_n)$ such that

 $x_{k+1} + a_{k+1} \notin \bigcup_{L \in \operatorname{Min}(y_1, \dots, y_k) \setminus V(N)} L.$

 $y_{k+1} \coloneqq x_{k+1} + a_{k+1}$. Then Let $y_{k+1} \in N$ and $Rad(N) = Rad((y_1, \dots, y_k, y_{k+1}, x_{k+2}, \dots, x_n))$. This completes the inductive step in the construction. Now it is easy to see that Min $(y_1, \dots, y_{n-1}) \setminus V(N) \neq \emptyset$. Also using an induction argument we can deduce that for any $1 \le j \le n \square - 1$ and any $L \in Min(y_1, \dots, y_j) \setminus V(N)$ we have $ht(L) \geq j$. Consequently, since there exists a prime submodule L of М in which $L \in Min(y_1, \dots, y_{n-1}) \setminus V(N)$ it follows that $n-1 \leq ht(L) \leq dim Spec_R(M) = d$. Which implies that $n \leq d + 1$, as required.

References

- S. Abu-Saymeh, On dimensions of finitely generated modules, Comm. Alg. 23(1995), 1131-1144.
- [2] K. Bahmanpour, A. Khojali and R. Naghipour A note on minimal prime divisors of an ideal, Algebra Colloq. 18(2011), 727-732.
- [3] M. Behboodi, A generalization of the classical Krull dimension for modules, J. Algebra. 305(2006), 1128-1148.
- [4] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Univ. Press, Cambridge, UK, 1993.
- [5] J. Dauns, *Prime modules*, J. Reine Anegew. Math. 298(1978), 156-181.
- [6] J. Jenkins and P. F. Smith, On the prime radical of a module over commutative ring, Comm. Alg. 20(1992), 3593-3602.
- [7] O. A. Karamzadeh, *The Prime Avoidance Lemma revisited*, Kyungpook Math. J. 52(2012), 149-153.
- [8] C. P. Lu, Unions of prime submodules, Houston J. Math. 23, no.2(1997), 203-213.
- [9] K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow math. J. 39(1997), 285-293.
- [10] S. H. Man and P. F. Smith, On chains of prime submodules, Israel J. Math. 127(2002), 131-155.
- [11] A. Marcelo and J. Munoz Maque, Prime submodules, the discent invariant, and modules of finite length, J. Algebra 189(1997), 273-293.
- [12] H. Matsumura, *Commutative ring theory*, Cambridge Univ. Press, Cambridge, UK, 1986.
- [13] R. L. McCasland and P. F. Smith, *Prime submodules* of Noetherian modules, Rocky Mountain J. Math. 23(1993), 1041-1062.
- [14] A. A. Mehrvarz, K. Bahmanpour and R. Naghipour, Arithmetic rank, cohomological dimension and filter regular sequences, J. Alg. Appl. 8(2009), 855-862.
- [15] J. J. Rotman, An introduction to homological algebra, Pure Appl. Math., Academic Press, New York, 1979.
- [16] D. Pusat-Yilmaz and P. F. Smith, *Chain conditions in modules with krull dimension*, Comm. Alg. 24(13)(1996), 4123-4133.