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1. Introduction

Throughout this paper, let R be a commutative ring (with
identity) and M be a unital R-module. A proper
submodules N of M with ¥ :z M = p is said to be prime or
p-prime (p a prime ideal of R) if rx e N forreRand x €
M implies that either x € N or r € p. Another equivalent
notion of prime submodules was first introduced and
systematically studied in [5]. Prime submodules have been
studied by several authors; see, for example, [3], [1], [6],
[8], [9], [10], [11] and [13]. In section 2 we study the chain
of prime submodules and we shall improve the results
given in [10]. The Prime avoidance Theorem states that if
an ideal | of a ring is contained in the union of finite
number of prime ideals, then | must be contained in one of
them. This result's generalization for the non-commutative
case has been proved in [7]. In section 2, we generalize this
theorem for modules in different states. In section 4 we
prove some new results about the finiteness of the set of
minimal prime submodules of an R-module. Also we
introduce the concept of arithmetic rank of a submodule of
a Noetherian module and we give an upper bound for it.
Throughout, for any ideal b of R, the radical of b, denoted
by Rad(b), is defined to be the set {x € R : x™ € b for some
n € N} and we denote {p € Spec(R) : p 2 b} by V(b),
where Spec(R) denotes the set of all prime ideals of R. The
symbol S denotes containment and = denotes proper
containment for sets. If N is a submodule of M, we write N
< M. We denote the annihilator of a factor module M/N of
M by (V:z M). The set of all maximal ideals of R is
denoted by Max(R). For any ideal | of a ring R and for any
R-module M, T;{MJ}is defined to be the submodule of M
consisting of all elements annihilated by some power of I,
ie., USo:(0:5:I™). For any unexplained notation and
terminology we refer the reader to [4], [12] and [15].

2. Chains of prime submodules

The results of this section are generalizations of the some
results given in [10] and [3]. First we need the following
definition.

Definition 2.1. Let B be a Noetherian ring and M be a
finitely generated f-module. For each # £ Spec(f) we
define 4,(M) as following:

(M) = di My oz, (Mp /2Mp).

Remark 2.2. Let £ be a Noetherian ring and M be a finitely
generated R-module. For each p € Spec(R), 1,(M) is the

number of elements of any minimal generator set of the
Rp-module Mp and soi,(M)} <. Also we have
1,(M) = 0if and only if p & Supp(M). Moreover, for
any pair g = pof prime ideals of R it is easy to see
that 4,(M) < 4, (M).

The following description of prime submodules will be

useful in this paper.
Lemma 2.3. Let R be a Noetherian ring and p € 5pec(R].

Let M be a finitely generated R-module and IN' be a proper
submodule of M. Then the followings are equivalent:

(i) V is p-prime submodule of M.

(i) Assg(M/N) = {pland (N M) =p.

(iii) (N iz x) = p, for each x EM/N.

Proof. Easily follows from definition.

The following theorem is the first main result of this paper
and a generalization of [10, Lemma 2.6].

Theorem 2.4. Let R be a Noetherian ring and p € Supp(M).

Let M be a finitely generated R-module. Then the
following statements hold:

(i) The length of any chain of p-prime submodules of M is
bounded from above by 4, (M7} — 1.

(ii) There is a chain of p-prime submodules of M, which is
of length 4,(M) — 1.

(iif) Any saturated maximal chain of p-prime submodules
of M is of length 4, (M) — 1.

Proof. (i) Let n:= 1,(M). Then it follows from the
hypothesis # € Supp(}) that n = 0. Suppose the contrary
be true. Then there exist a chain of g-prime submodules of
M as;

Nyc N, NN,

By Lemma 23 we have p & Supp(M/N,} and
SO lg ((M/Np)p) = 1. On the other hand since by

assumption we have(Ny iz M) = p, it follows that there
is an exact sequence

MipM —= M/N, — 0.

Hence we have the following exact sequence:

(M/pM), = (M/Ng), = 0.

Therefore, it follows from definition that

Loy ((M/No)g) = dimg ypa, (M/Nodp) = A, (M) = m.
On the other hand for each 0 = i = n — 1 there is an exact
sequence

0 = Ni . fN; = M/N;

But, since N;,4/N; = 0, it follows from Lemma 2.3 and
above exact sequence that

@ = Assg (N, /N © Ass(M/N;) = {p],

Which implies that Assz(N;,,/N;} = {z}. In particular
p € Supp (N, /N;), and so (N, /N;), # 0.Consequently
Lay ((Niwy /[NT)p) = 1. Whence, we have

n =25 1 i U ((Nigs/N)p) = La (Na/No)y) 1 (M/Ng),) ~12n -1

,Which is a contradiction.

(ii) Let A,(M)} == Then n = 0. As p € Supp(M) it
follows that (pM :z M) = p. Therefore, p € Assz(M/pM).
Let Ny = pM, whenever Assz(M /pM)= {p}. In other
case suppose

Assg (M /pM\{p} = {gqo. . Gk}

Let I= Ni_,q; andNy/pM :=L(M/pM). Then we
have

Assg(M/Np) = Assp((M/pM)/T,(M jpM)) = Assg (M fpM)\V (D)

.But, since for each 1=j=k we have
Anng (M/pM) = pS q; andg; # p, it follows that
p € V(qg;). Therefore

pe Ui, v(q) =v(Nki,q) =v(D).

Therefore

Assz (M Np) = Assg(M/pM WV = [pl
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Which results Anng (M/ Ny} € p . Therefore, we have
p=(pM:y M) (Ny:g M) S pand so ( Ny:z M) =p.
Also as

Assg(No/pM) = Assp(L(M/pM)) = Assy(M/pM) NV ({I)

it follows that p & Suppi{ N /M) and hence
(Ny/pM)y = 0. Now in both cases it follows from
Lemma 2.3 that N is a g-prime submodule of M. We
shall construct the chain Ny < - N,_, of p-prime
submodules of M such that lg, ((Nis1/Ni)p) = 1, for

each® =i =n—2, by an inductive process. To do this
end, assume 0= j<n—1, and that we have already
constructed Ny = N, - N;. We show how to

construct N;.;. To do this, since by definition M = N; it
follows that there is an element xe& M\N;. Let
L:=Rx+N. In view of Lemma 23 we have
L/N; = R/fp. In particular we have la, ((L/Nf)p) = 1. By
inductive hypothesis we have

La, ((M/L),) = La ((M/No)p) — La ((L/Ne),) = a ((M/pM)p) — [ In ((L/NDp) + T2} ta ((Neas/Np)] =

n—1+jl=n—j—1=0.

Therefore, (M /L}, # 0. Now it is easy to see that
(L:zM) = p, and so pe Assp(M/L). Let Ny, =L
whenever Assz (M /L) = {p}. In other case suppose
Assg(M/LN\{p}={gq." . q. }.

Let] = Ni,q'.and Ny, /L :=T; (M/L). Then we have

{Ep{{{ﬁfj- + Rx)/N;)), = 1. LetlL:=N;+Rx. Since
N1 /L is the unique minimal element of the set
{NfL : N/Lisap —prime submodule of M/L},

again using (i) it follows from the proof of (ii)
that{N;,, /L), = 0. Thus we have

22 L ((Niwo/Ni)p) = L ((Wia /L)) + L (L)) = 0+ 1 =1,
which is a contradiction. This completes the proof.

Assg(M [N ,) = Assg((M/LY/T;(M/L)Y) = Assg(M/L)\V(J) Now we need the following definitions.

But, since for each 1=i=twe have
Anng (M/L)=p<Sg; and p=g;, it follows that
p € V(g{). Therefore,

Assg (M /N; . ) = Assg(M/LNWV{T) = [p},

Which results Anng (M/N;,,) S p. Therefore, we have
p=(UL:M (N, s M) Sp and S0
(Nioy 2 M) =p. Also as

Assg(Ni, /L) = Assp(G(M/L)) = Assg(M/L)NV(]),
it follows that p & Supp(N.,/L) and
(N; 1 /L)y = 0. Whence,

Loy (Nt /N)p) = L ((Npaa/L)p) + Lg (L/N7)p) =1+ 0 =

hence

Now in both cases it follows from Lemma 2.3 that IV, ; is
a p-prime submodule of M such that lay, ((Njs 1 /Nf)p) = 1.
this completes the inductive step in the construction.

(iii) Let A,(M) = =n and Ny << Nybe a saturated
maximal chain of p-prime submodules of M. We show that
k=mn-1 By (i) we have ¥ = n—1. Since by
assumption this cain is maximal it follows from the proof
of (ii) that { a, ((M/Ng)p) = 1. Now suppose the contrary
be true. Then the set

E:={N: Nisap— prime submodule of M},

has a unique minimal element N = M,z N with respect
to " £". So it follows from hypothesis that ¥ , = N .
Also using (i) it follows from the proof of (ii) that
(No/ pM)y = 0. Therefore,

{RP{{NEL"JD]?] =n-1

Now suppose the contrary be true and & = n — 1. Then
we deduce that there is 0 = j = kE— 1, such that
la, ((Njsa/N})p) = 2. Then there is x € N;,\IN; . By
Lemma 2.3 we have (N;+Rx)/N;=R/p and so

Definition 2.5. Let R be a Noetherian ring and M be a
finitely generated R-module. For each p-prime submodule
N of M we define p-height of N as:

p—ht(N):= suplk € Nyt 3Ny C = € Ny = N; with N; € Spec (M), vi}
where Spect (M) denotes to the set of all p-prime
submodules of M as an R-module.

Definition 2.6. Let R be a Noetherian ring and M be a
finitely generated R-module. For each p-prime submodule
N of M we define height of N as:

ht(N):= sup{k € Ny: 3N, - c Ny = N; with N; & Specy (M), vi}

where Spec;(M) denotes to the set of all prime
submodules of M as an R-module.
Definition 2.7. Let R be a Noetherian ring and M be a
finitely generated R-module.
Then we define dimSpecy (M) as:
dimSpecg (M) := sup{ht(N)} : N € Specy (M}

The following result is an immediately consequence of
Theorem 2.4.
Corollary 2.8. Let & be a Noetherian ring and M be a
finitely generated R-module and N be a p-prime
submodule of M. Then
p —ht(N) = Iy (NfpM),) = dimg jps, (Np/pMp).
Proof. Let k := p — ht(N}. Then there is saturated chain
of p-prime submodules of M as N = --- = N, = N, By the
proof of Theorem 2.4 this chain can be extended to a
maximal saturated chain of g-prime submodules of M as
NpccNyg=Nc-cN,_,,
Where 4,(M) = n. Then by the proof of Theorem 2.4 we
have (Ny/pM), = 0 and la, (N s /N ) = 1, for

each @ = i = n — 2. Now clearly the assertion holds.

As an application of Theorem 2.4 we prove the
following.
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Theorem 2.9. Let # be a Noetherian ring and M be a
finitely generated R-module and N be a p-prime
submodule of M. Then

ht(N) < (A, (M) (dimg (M, ) < o,

Proof. Let Ny < - c Ny, =N be a chain of prime
submodules of M, such that for each 0 =i =k, N;is z;-
prime, where py =p. Then it easily follows from
definition that

RETER=P

Therefore, the set {z;}{_, has at most dimy_(2,) element.
(Note that p; € Supp (M), forall 0 = i< k). Let

{?’[}E‘.:n = {ﬁ'n =B t?r}J
where t = d:‘mﬁp{ﬂfp} and p=gy, 2 2q,. Let
A = Spec (M) n (N}, for each 0 < j < £, Then
by Theorem 2.4 the set A; has at most A4,(M) element.
But .f{q‘l.{ﬂﬂ = 4, (M), because g; € p. Therefore as
U_?:l"q_i' = {NL'}LD,
it follows that k < t4,(M) = (dimg_(M,))2; (M). Which
implies that
ht(N) < (3, (M))(dimg_ (M,)) < oo,
as required.
3. Prime avoidance Theorem

The results of this section which will be useful in the
next section improve some well known results given in [8].

Proposition 3.1. Let R be ring and M be a non-zero R-
module and N be a submodule of M. Let py.*. 1, be

distinct prime ideals of R. Let foreach 1 =i = n, N; be a
p;-prime submodule of M. If N € U, N;, then N S N;
forsome 1 = j =n.

Proof . We do induction on n. The case n =2 is easy. Now
let n =3 and the case n — 1 is settled. By definition for

gach 1=i=n we have g = (N;:;zM). From the
hypothesis N c UL, N it follows that
N =UL,(N;nN) Now let the contrary be true.
Then N € N;and hence (W; NN} # N, forany 1 =i = =,
Also from the inductive hypothesis it follows that
N # Uigrry o myge(N; N Ny for each 1= k=nand so
Ve nN) € Uigipy W NN Let g be a minimal
element of the set {y. .1, } with respect to " £ " Then
m € gfor each & € (Lpy. . 2. 1\{g}). Without loss of
generality we may assume that g = p,. Let
Jii= (N;:z N, for all £ = 1.+, n. Then from the definition
it follows that p; € J;, for all i = 1,-=-,n. On the other
hand for each x e N and r R, if rx € (N; N N)
and x & {(N; n N, then rx € N; and x € N;. Therefore it
follows from the definition that » € ;. So »M = N;, and
consequently, *N S {N; n N}, As (N; N} = N it follows
that there exists an element ¥ £ {(N%({N; n N}). Now for
each s € J; we have sy € (N; " N} E N; and v & N;. So it
follows from the definition that s € g;. Therefore,
(N;gN) = J; = g = (N;:g M) But it is easy to see

that (N; g N) = ((N; nNY g N Thus for
eachl = i ==,

N;: n N is p;-prime submodule of N. Therefore without loss
of generality we may assume that N = M = UL, N; and
N, € UPZPN;. Next let T: = NP, N;. Then it is not to see
that for each 1 =i = n, Ni/T is p;-prime submodule of
M/T and M/T = U™, N; /T. Therefore, without loss of
generality we may assume M = UL, N;and N, N; =0
and N, € U'Z!N;. Then there is an exact sequence
0—M—=&L, M/N;, which implies that
Ni_,p = Anng (P, M/N;) S Anng (M). On the other

hand for each l=i=n we have
Anng (M) € (N; iz M) = p;. So Anng (M) c N, p;.
Hence  Amng(M)} =MN&.,p;. Now if we have

NEZEN; = 0, then there is an exact sequence

0= M@ M/N; which implies that
NSty = Anng (@15 M/N) € Amng (M) =Nl p Sy
. SO0 P Em,. for some 1=t =n-—1, which is a
contradiction.  So M=/ N; # 0.Then  there is an
element 0 = a € NZI N As NP, N; =0, it follows that
a & N,. On the other hand since N, € UP=! V., it follows
that there is an element b € N, such that b & U™,
Now asea + b e UL, IV;, it follows that a + b € N for
some 1 = & = n, which is a contradiction. This completes
the inductive step.

Remark: Proposition 3.1 does not hold in general. For
example let # = 2 be a prime number and 2 = n € M. Let

R=Z,={01-,p—1}and M =BL, I, Let

U =1{N: N = Rx,for some(0 = x € M}

Then ¥ is a finite set that has at most 2™ element and for
each N € U, N is a {0}-prime submodules of M such that
Mc Uy N . ButM  Nforany N € 2.

The following proposition is a generalization of [12, EX.
16.8].

Progosition 3.2. Let R be a ring, M a non-zero R-module,
N a submodule of M and x € M. Let p,.-. 1, be distinct
prime ideals of R. Let for each 1 = i = n, N; be a ;-prime
submodule of M. If N + Rx € U, N;, then there exists
a €N suchthate + x & UL, NV,

Proof. We use induction on n. Let n = 1. If x € N; then
N € N,. So there is @ € NN, and it is easy to see that
a+x &N, Butif xr &N, then by choosing a =0¢&N
the assertion holds. Now suppose n = 2 and the case nn — 1
is settled. Let q be a minimal element of the set {p . . by }
with respect  to et Then % g for
each 7 € (Ipy. .o 1\[q1). Without loss of generality we
may assume that g = p,. Then it is easy to see that
NPt €. By inductive hypothesis there is an element
b e N such that b + x & U™} ;. So the assertion hold for
a=15b, whenever b+x &N, So we may assume
b+xeN, Then we claim that N £ N,. Because,
ifN =N, then xeN, and so N+ Rx S N, c U7, N;,
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which is a contradiction. Therefore, there exists an
element ¢ € N\N,. As NP m T, it follows that there
exists an element r € (MNZip)\p,. Then it easily
follows from the definition of the g, -prime submodule that
re & N,. Moreover, since * € NP2 p; it follows from the
definition that rc € N N, Now it is easy to see that
re+b+xe UL, N, Therefore, the assertion hold
fora:= re + b € N. This completes the induction step.

Remark: Proposition 3.2 does not hold in general. For
example let p=2 be a prime number and

R=EZ,={0.1~,p—1} and M = E,$I, Let

N =(10)Z,, x = (0,1) and N; = (1 1)Z,,
for i=0,-~,p—1. Then N; is {0}-prime submodule of
the R-module M, for all i=0.,-,p -1 Also as

(10 eN+Rxr and (LO)e U N, it follows
that ¥ + Rx 2 UPZ'N;. But for any a €N we have
a+x e UL N,
Now we give an other aspects of prime avoidance Theorem
in different states.

Proposition 3.3. Let R be a ring, M a non-zero R-module,
N a submodule of M and &k € M. Let for each 1 = i =< k,

meNandforl=i=kand 1=j=mn, the ideals p; ;
be distinct elements of Spec(R). Let foreach 1 = i = k and
1=j=mn;, N;jbe a g ;-prime submodule of M. Let for
each 1=i<k N, =ML N;;. If NSUL, N, then
NZSN; forsomel =t =k.

Proof. Let the contrary be true. Then for each 1 =i = &
we have N £ ;. Therefore there exists 1 = 5; = n; such
that N € IV; ., . But in this situation we have

NS UL, N, € UL, N,

Consequently, it follows from proposition 3.1 that there is
1 =1 =k, such that N S Ny ;;, which is a contradiction.
Proposition 3.4. Let R be a ring, M a non-zero R-module,
N a submodule of M, x € M and k € M. Let for each
l=iz=k meMandforl=i=k andl = =<mn, the
ideals #;; be distinct elements of Spec(R). Let for
eachl=i=k and 1=j=m, N;;be a p;-prime
submodule of M. Let for each 1 = ¢ = k, N; = 7L, Ny ;. If

N+ Rx € UL, N; then there exists a €N such that
a+xeUL N,

Proof. For eachl=i=<k we have N+ Rx €N;
Therefore there exists 1=s;=mn; such that
N + Rx € N; .. But in this situation using proposition 3.1
we have

N+ Rx € Uf_, N;,.

Consequently, it follows from proposition 3.2 that there is
aEN, such that otxe UE":lNL-_SL.. But
since UF_, V; € UE":lN.;SL. , it  follows  that
a +x & UK, NV, as required.

Proposition 3.5. Let R be aring, | an ideal of R and x € &.
Let Ji.=Jn.(n =1} be ideals of R such that for each
1=i=n we have Rad({J;) =] If I + RBx € UL, [,

then there exists an element @&l such that
a+xelUi ]

Proof. For each 1=i=<n we have I + Rx Z ],
Therefore for each 1 =i=mn, since [; = Mgy it
follows that there exists #; € V(J;) such that ] + Rx € ;.
But in this situation we have [ + Rx & UL, p.
Consequently, it follows from [12, Ex. 16.8] that there is
ael, such that e+zxeUl,m . But since
Ur,j, e UL, p, it follows that a+xe UL,J;, as
required.

Before bringing the next result we need the following well
known lemma.

Lemma 3.6. Let {R.m) be a commutative local ring such
that A /m is infinite. Let M be an R-module and Ny.==, N,
be submodules of M such that M = Ui_, N;. Then there
exists1 = j =t M= N;

Proof. The assertion follows using NAK Lemma.
Proposition 3.7. Let R be a commutative ring, M be an R-
module and N,.--.N. be submodules of M such that

M = Ui_, N;. Then Ni_, Supp M/N; © Max(R).

Proof. Suppose the contrary be true. Then there exists
pe (N, Supp M/ N)\Max(R). So R/p is an integral
domain but not a field and therefore &, /pR,, is infinite. By
hypothesis and Proposition 3.6 there exists 1 = j = ¢ such
that (M /N;), =0 and so p & Supp M/N; which is a
contradiction.

Corollary 3.8. Let R be a commutative ring and
v € Spec(H)\ Max(R). Let M be an R-module and

Ny, -+, Ny be p-prime submodules of M and N a submodule
of M such that IV = Uf_, N;. Then there exists 1 < j = ¢
such that ¥ < IV;.

Proof. Let for any 1 =j=¢, N ZN; . Then for all
1=j=t, we have N nN; #N. Since pM SN; , it
follows that pN S N; and so pN S NnNN;. Hence
pS(NNNz:N). On the other hand there exists
x € NN NN; and so x € N;. Let € (N; nIN: N). Then
re e Ny N EN; and xg€N;, so re(NgM)=p
Consequently (N; N N:N)Sp and so (N;nN:N} =p.
Now it is easy to show that N; 1 NV is a g-prime submodule
of N. Since NcUi_,N;it follows that N
=Uf_,(N n N;). But in this case
p € Ni_, Supp (N/N;n N). Since p € Spec (R)\Max (R)
this is impossible by Proposition 3.7.

Proposition 39. Let R be a commutative ring
and ¥ € Spec (R such that R /z infinite. Let M be an R-
module and Ny.-.,N; be p-prime submodules of M and N
a submodule of M such that N = Uf_, ;. Then there exists
1=j=tsuchthat N S N;.

Proof. If p & Max(R), the assertion follows from
Corollary 3.8. So let p € Max(R) and forall 1 = i = ¢, we
have N £ Ni. Hence for any 1 =j =&, there exists
x;e N\N; . Set N'=(x;.~.x.JE N and so we have

N'fpN"= Ul_,((N' N N;) + pN"/pN'. Since R/p is
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infinite, there exists l=j=t such that
N'fpN"= ((N'nN;) + pN")/pN'. This implies that
N'=(N'"nN;)+pN'SpM + N; =N; . Hence N'c N;
which is a contradiction.

Proposition 3.10 Let R be a commutative ring
and p € Spec(R) such that B /p infinite. Let M be an R-
module and Ny.--.N; be p-prime submodules of M and N
a submodule of M. Let xe M such that
N+Rx UL, N, Then there exists a€N such
that & + x & Ul_, ;.

Proof. It is certainly true for t = 1. Let t > 1 and the result
has been proved for tE —1. If N <UL, Nithen by
Proposition 3.9 there exists 1 = j = t, such that N S N;.
Without loss of generality we may assume that j = t. By
induction hypothesis there exists ke N such that
b+xeUZIN, Since b+x &Nt follows that
b+xeUl_,N; and so the assertion follows. Now
suppose  that N ZUI_,N; then there exists
c e N\ Ui, N;. In this case if x & Ul_, N; we set a = 0
and if x € Nf_, N; then we set a = c. Now suppose that the
above conditions are not true. We may assume that there
exists 1=k=t—1 such that =xel%L,N;and
xeUl_.. N:. Since R/p is infinite, so there exist
t —Ek + 1 non-zero distinct elements in R/p such as
S +p S g TP Set
A={sc+xli=1,t—k+1) If there exists an
element s;¢ + x in A such that s;c + x &€ Uf_, N; then the
proof is complete. Otherwise, foreach 1 =l =t -k +1,
there is 1 =j =t such that s;e +x eN; . If 1 =j =k
then 5; € p and so 5; + p = p which is a contradiction. So
k+1=j=t and hence A<S Ui_,,.N;. Whence,
according to the Dirichlet drawer principle, there exists
E+1=j=t and 1=l =i, =t—k+1 such that
s,c+x and s,c+x belong to N. Therefore
5, + p= s, + p whichis a contradiction.

4.  Minimal prime submodules

The following lemma is needed in the proof of the first
main result of this section. Note that in the sequel for any
submodule B of an R-module M, the set of all minimal
prime submodules of M over B is denoted by Min(B).
Moreover, we denote Min(0) by Min(M). Also, V (B) is
defined as follows:

vV (B) =N € Specg (M) : N 2 BL

Lemma 4.1. Let R be a commutative ring and
p.g €5pec(R). Let M be an R-module and
NNy e Min M be respectively p-prime and g-prime
submodules. Then ¥y = N; if and only if # # g.

Proof. If # # g then obviously Ny # N;. Conversely, Let
N, =N;but p=gq. Since L,=1] oL and

Lespectinn

LES?E@M:‘L it follows that L1 = L2 which is a
contradiction.

Definition 4.2. Let M be an R-module and B be a
submodule of M. Set

D(B) ={N € Min(B) : N is not finitely generated R — module}

The minimal prime submodules of an R-module M has
been studied in [16], for example see [16, Theorem 2.1]. In
the next theorem we present a new conditions that an R-
module M has only a finite number of minimal prime
submodules, whenever R is a Noetherian ring, which is a
generalization of [2, Theorem 2.1].

Theorem 4.3. Let R be a Noetherian ring, M be an R-
module and B be a submodule of M. Then the following
statements are equivalent:

(1) Min(B) is finite.

(2) For every T € Min([E") there exists a finitely generated
submodule ¥  of % such that V(K i) nMin(B)| < co.
(3) For every ¥ € Min(E)} there exists a finitely generated
submodule & , of % such that V(N 3 ) n Min(B) = {%2.
(4) Forevery T € Min(B), T € Upcpsin a7y 1w L

(5) For every & € Min(E} there exists an element x ;, € T
of B such that V(Rx 5 ) n Min(8) = {$).

(6) Forevery 6 € D(B), T Z Uycnsin iz L

(7) For every T € D(E) there exists an element x ;, € |
of % such that V(Rx 5 ) n Min(B) = {$1.

(8) For every ¥ € D(E") there exists a finitely generated
submodule ¥  of % such that V(K i) nMin(B)| < co.
(9) For every % € D(E") there exists a finitely generated
submodule I , of % such that V(N 5 ) n Min(B) = {%2.
Proof. Without loss of generality, we may assume that B =
0, Specy(M)=0 and consequently Min(M) =0,
(1) = (2} Since Min(M) is finite, by Lemma 4.1 and
Proposition 3.1, for every P e Min(M),
B L Upeminpny i L and there exists
x € P\ VUpcpingeyym L. Set Ky =Rx. Then Ky is
finitely generated and set V(K g) N Min(B) = {$} is
finite.

(2)=(3) Let T e Min(M) and
V(K 5) N Min(M) = {%,%,.,%,). Using Lemma 4.1
and Proposition 3.1 we can find an
element x € P4 U, ;. Let Ny:=FKy+ Rx. Then Ny is
finitely generated and V(¥ 5 ) n Min () = {551,

(3) = (1) Suppose the contrary be true. Then the set
Min(M) is infinite. Let

A:= {p € Spec(R) : Spec 2(M) N Min(M) = 0}

E =[N <M : Nis finitely generated and V (N) n Min(M) # Gis a finite set.}

F={L<M:vNeENZIL)

We show that there exists a maximal element K of F such
that (K :z M) is a prime ideal. Since Min(M) is infinite, so
the zero submodule of M belong to the F and therefore by
Zorn's Lemma F has a maximal element. Let L be a
maximal element of F. If {L:z M) be a prime ideal, we
are through. If not, then it is clear that (L:z; M) # R. Let
gy € Assp (R/(L:y M7)). By the definition there exists
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reB\{L:; M) such that gy = ((L:z M): +) and
therefore g,+M € L. Since r & (L:z M), it follows that
there exists an element x € M such that »x & L. Now there
exists N € E such that N = L + Rrx. In particular,
gNEL+grxSL+grM L,

Since g N is finitely generated, S0
Wig,N}nMin(M)}| = oo, But in this case for all
T e (Vig,N)n Min(MI\WVIN) nMin(M)), we have
gV E % and N € %, Now if I be a p-Prime submodule,
then = and S0 Vig,) nAl = oo
HencelV{g,N) n Min(M)}| = oo, So for all N € E, we
have N & g, M and therefore g, M € F, Let

U=1{g €Vig,):qgMeF}.

Since R is Noetherian it follows that U has a maximal
element, say g;. g = H, for some maximal element H
of F. We claim that {H :z M is a prime ideal of R. If not,

according to the above argument, there exists
gz € Assp(R/(H :z M)} such thatg:M e F  and

gz E(H:z M) E g5. By choosing of gz, we must have
g: =gz, Wwhich is a contradiction.  Therefore
(H :z M) = g5 is a prime ideal. Now we show that H is a
gz-prime submodule. Otherwise there exist x € M'\H and
r € R\ g, such that rx € H.So
r € Zg(M/H) = U caeeonyy @ and hence there exists
g' € Assz (M /H) such that = € g'. Consequently, g; = g'.
On the other hand by definition ' = (H :z vJ for some
y e M\H. Since H = H + Ry, it follows that there exists
N € E such that N £ H + Ry and so g'N € H. According
to the above argument, |V{g’M} n Min(M}| = o which
implies g'M € F. Finally, we have g; ={(H:z M)c g’
which is a contradiction withthe choosing of gz. Therefore
H is a g;-prime submodule of M. Whence, H contains a
minimal prime submodule of M such as %. By assumption
there exists a submodule Ny of ¥ such that Ny E $ = H
and N  E, which is a contradiction. Therefore, Min(M)is
a finite set.

Now the proof of (1} = (2} < (3) is complete.

(1} = (4} Follows from Lemma 4.1 and Proposition 3.1.
(41 = (1) = (3) Since (3} = (41 =(3) is clear so we
have (1} < (4) = (3).

Now we have the following:
De@e@e@ms0)

(41 = (&) Isclear.

(8)=(3) Since for every T ed,

B2 Upcmin oL, it follows that thereexists xy € 9
such that V (Rx ) n Min(B) = {$1. On the other hand for
all B  (Min (M)\D(03), we have V() n Min(B) = %],
where % is finitely generated. So the assertion follows.

(6) = (7yand (1) = (8], (9 are clear.

(8).(9) = (3) Follow by a similar arguments as in
(6) = (3).

The following results follow from Theorem 4.3.

Corollary 4.4. Let R be a Noetherian ring, M an R-module
and B be a proper submodule of M. Then Min(B) is infinite

if and only if there exists® € D(E) such that

T c ULE.;:-:in (w2 dapdy L

Proof. Follows immediately from Theorem 4.3.

Corollary 4.5. Let R be a Noetherian ring, M an R-module
and B be a proper submodule of M such that any minimal
prime submodule over B is finitely generated. Then Min(B)
is finite.

Proof. Follows immediately from Theorem 4.3.

Definition 4.6. Let R be a Noetherian ring, M # 0 a
finitely generated R-module and N be a proper submodule
of M. Then the radical of N is defined as:

Rad{,nhllr:] = PILE[I-'[iI:I J.TI'-

Before bringing the next definition, recall that for any ideal
I of a Noetherian ring, the arithmetic rank of I, denoted by
ara(l), is the least number of elements of | required to
generate an ideal which has the same radical as 1, i.e.,

ara(D) =minfn € N, : 3x,.,x, € [ with Rad((x,,~,x,)) = Rad(M

Definition 4.7. Let R be a Noetherian ring, M =0 a

finitely generated R-module and N be a proper submodule
of M.
We define the arithmetic rank of N, as:

ara(N) = min{n e Ny : 3x,,~.x, € N with Rad((.rl,---,xﬂ]} =Rad(N)}

The next theorem is a generalization of [14, Theorem 2.7].
Theorem 4.8. Let R be a Noetherian ring, M # 0 a finitely
generated R-module and N be a proper submodule of M.
Then ara (N} = dim Specg (M) + 1.

Proof. Let d := dim Specy (M). We may assume that d is

finite.  Now, suppose, to the contrary, that
ara(N) =d+1. Let n:=ara(N). Sincen=d+1z1

it follows from the definition that there exist elements
%y, %, in N such that Rad (N} = Rad(( x,.-,x,J).As
n > 0 it follows that Min{0\V (N} = @. Therefore it
follows from Lemma 4.land proposition 3.1 that
Therefore

(g x0) € U cptintodywon Ly and so by Proposition 3.2
there is a; € (x5.---,x,) such that
xy+ ay € Upopintonon L

Ng ULEMiuIZn)'-,m.rj L.

Let Vo= o+ oAy, Then wEN and
Rad(N) = Rad(( v,.x,..x,)). We shall construct the
sequence Vi ¥nog EN such that
Rad(N) = Rad((y, - yp_,. x5)) and

¥ & Uy entint (yayioawon Ly for each l=j=n-1by
an inductive process. To do this end, assume that
1=k=n-—1, and that we have already constructed
elements .-+, % such that

Rad(N) = Rad((yy. ) ¥ Xpeqs 2 X))

We show how to construct 3¥;.,;. To do this, as
k <= n—1 it follows that

Min( yy, - 9N\ (N) = 0.

Therefore it follows from Lemma 4.1 and proposition 3.1
that

Ng I—‘ILEI!-'[iu[ T A Ly ey L

Therefore

Covems Ve Xpgo v X0 ) € Uy g yyylwen L, and so
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by Proposition 3.2 there is @y, & Cvy. = Vi Fpazs 0 )
such that
Xper T O €U eMinl yy - ¥\ N L.
Let  J%s1™= Ty + Ggpy. Then 3. €N and
Rad(N) = Rad ((yy. . ¥ Yisr Xpez 0 Xn)).This
completes the inductive step in the construction. Now it is
easy to see that Min(y,, =, 3, _, AV (N} = 8. Also using
an induction argument we can deduce that for any
1=j=nE -1 and any L& Min{ y, .9 )\V (N) we
have ht(L) = j. Consequently, since there exists a prime
submodule L of M in
which L € Min{ vy, =,y _, NV (NJit  follows  that
n—1= ht(l) < dimSpecy (M) = d. Which implies that
n=d 4+ 1,asrequired.
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