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ABSTRACT 
Abstract. Let R be a commutative ring with identity and let M be a unital R-module. In this 

paper we study the various properties of prime submodules. Also we give a new equivalent 

conditions for a minimal prime submodules of an R-module to be a finite set, whenever R is 

a Noetherian ring. Finally we prove the Prime avoidance Theorem for modules in different 

states. 
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1. Introduction 

Throughout this paper, let R be a commutative ring (with 

identity) and M be a unital R-module. A proper 

submodules N of M with  is said to be prime or 

p-prime (p a prime ideal of R) if  for r  R and x  

M implies that either x  N or . Another equivalent 

notion of prime submodules was first introduced and 

systematically studied in [5]. Prime submodules have been 

studied by several authors; see, for example, [3], [1], [6], 

[8], [9], [10], [11] and [13]. In section 2 we study the chain 

of prime submodules and we shall improve the results 

given in [10]. The Prime avoidance Theorem states that if 

an ideal I of a ring is contained in the union of finite 

number of prime ideals, then I must be contained in one of 

them. This result's generalization for the non-commutative 

case has been proved in [7]. In section 2, we generalize this 

theorem for modules in different states. In section 4 we 

prove some new results about the finiteness of the set of 

minimal prime submodules of an R-module. Also we 

introduce the concept of arithmetic rank of a submodule of 

a Noetherian module and we give an upper bound for it. 

Throughout, for any ideal b of R, the radical of b, denoted 

by Rad(b), is defined to be the set {x  R :   b for some 

n  N} and we denote {p  Spec(R) : p  b} by V(b), 

where Spec(R) denotes the set of all prime ideals of R. The 

symbol  denotes containment and  denotes proper 

containment for sets. If N is a submodule of M, we write N 

≤ M. We denote the annihilator of a factor module M/N of 

M by ( ). The set of all maximal ideals of R is 

denoted by Max(R). For any ideal I of a ring R and for any 

R-module M, is defined to be the submodule of M 

consisting of all elements annihilated by some power of I, 

i.e., . For any unexplained notation and 

terminology we refer the reader to [4], [12] and [15]. 

2. Chains of prime submodules 

The results of this section are generalizations of the some 

results given in [10] and [3]. First we need the following 

definition. 

Definition 2.1. Let  be a Noetherian ring and  be a 

finitely generated -module. For each   Spec( ) we 

define as following: 

 
Remark 2.2. Let  be a Noetherian ring and be a finitely 

generated -module. For each , is the  

number of  elements of any minimal generator set of the 

-module  and so . Also  we  have 

if and only if . Moreover, for 

any pair of prime ideals of  it is easy to see 

that  

The following description of prime submodules will be 

useful in this paper. 

Lemma 2.3. Let  be a Noetherian ring and . 

Let  be a finitely generated -module and  be a proper 

submodule of . Then the followings are equivalent: 

(i)  is -prime submodule of . 

(ii)  

(iii) , for each x M/N. 

Proof. Easily follows from definition. 

The following theorem is the first main result of this paper 

and a generalization of [10, Lemma 2.6]. 

Theorem 2.4. Let R be a Noetherian ring and p Supp(M). 

Let M be a finitely generated R-module. Then the 

following statements hold: 

 (i) The length of any chain of p-prime submodules of M is 

bounded from above by . 

 (ii) There is a chain of p-prime submodules of M, which is 

of length . 

(iii) Any saturated maximal chain of p-prime submodules 

of M is of length . 

Proof. (i) Let . Then it follows from the 

hypothesis   Supp( ) that . Suppose the contrary 

be true. Then there exist a chain of -prime submodules of 

M as; 

 
By Lemma 2.3 we have  and 

so . On the other hand since by 

assumption we have , it follows that there 

is an exact sequence 

. 

Hence we have the following exact sequence: 

. 

Therefore, it follows from definition that 

. 

On the other hand for each  there is an exact 

sequence 

. 

But, since , it follows from Lemma 2.3 and 

above exact sequence that 

, 

Which implies that . In particular 

, and so .Consequently  

. Whence, we have 

,Which is a contradiction. 

(ii) Let . Then . As   Supp( ) it 

follows that . Therefore, . 

Let  , whenever = { }. In other 

case suppose 

. 

Let  and . Then we 

have 

.But, since for each   we have 

 and , it follows that 

. Therefore 

. 

Therefore 
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Which  results . Therefore,   we have 

and so . 

Also as 

, 

It follows that  and hence 

. Now in both cases it follows from 

Lemma 2.3 that  is a -prime submodule of M. We 

shall construct the chain of p-prime 

submodules of  such that , for 

each , by an inductive process. To do this 

end, assume , and that we have already 

constructed . We show how to 

construct . To do this, since by definition  it 

follows that there is an element . Let 

. In view of Lemma 2.3 we have 

. In particular we have . By 

inductive hypothesis we have 

 

 

 
Therefore . Now it is easy to see that 

, and so . Let  

whenever . In other case suppose 

. 

Let  and  Then we have 

. 

But, since for each we have 

 and , it follows that 

. Therefore, 

, 

Which results .  Therefore,   we have 

 and so 

. Also as 

, 

it follows that  and hence 

. Whence, 

. 

Now in both cases it follows from Lemma 2.3 that  is 

a -prime submodule of M such that  

this completes the inductive step in the construction. 

(iii) Let  and be a saturated 

maximal chain of p-prime submodules of M. We show that 

. By (i) we have . Since by 

assumption this cain is maximal it follows from the proof 

of (ii) that . Now suppose the contrary 

be true. Then the set 

 
has a unique minimal element  with respect 

to . So it follows from hypothesis that . 

Also using (i) it follows from the proof of (ii) that 

. Therefore, 

 
Now suppose the contrary be true and . Then 

we deduce that there is , such that 

. Then there is  . By 

Lemma 2.3 we have  and so 

. Let . Since 

 is the unique minimal element of the set 

 
again using (i) it follows from the proof of (ii) 

that . Thus we have 

 
which is a contradiction. This completes the proof.  

    Now we need the following definitions. 

Definition 2.5.  Let R be a Noetherian ring and M be a 

finitely generated R-module. For each p-prime submodule 

N of M we define p-height of N as: 

where  denotes to the set of all p-prime 

submodules of M as an R-module. 

Definition 2.6.  Let R be a Noetherian ring and M be a 

finitely generated R-module. For each p-prime submodule 

N of M we define height of N as: 

, 

where  denotes to the set of all prime 

submodules of M as an R-module. 

Definition 2.7. Let R be a Noetherian ring and M  be a 

finitely generated R-module. 

Then we define  as: 

 
   The following result is an immediately consequence of 

Theorem 2.4. 

Corollary 2.8. Let  be a Noetherian ring and  be a 

finitely generated -module and  be a -prime 

submodule of . Then 

. 

Proof. Let . Then there is saturated chain 

of p-prime submodules of M as . By the 

proof  of  Theorem 2.4 this chain can be extended to a 

maximal saturated chain of -prime submodules of M as 

, 

Where . Then by the proof of Theorem 2.4 we 

have  and , for 

each . Now clearly the assertion holds. 

   As an application of Theorem 2.4 we prove the 

following. 
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Theorem 2.9. Let  be a Noetherian ring and be a 

finitely generated R-module and  be a -prime 

submodule of . Then 

 
Proof. Let  be a chain of prime 

submodules of M, such that for each , is -

prime, where . Then it easily follows from 

definition that 

 
Therefore, the set  has at most  element. 

(Note that  for all  ). Let 

 
where  and   Let 

 for each . Then 

by Theorem 2.4 the set  has at most  element. 

But  because . Therefore as 

, 

it follows that  Which 

implies that 

 
as required. 

3. Prime avoidance Theorem 

   The results of this section which will be useful in the 

next section improve some well known results given in [8]. 

Proposition 3.1. Let R be ring and M be a non-zero R-

module and N be a submodule of M. Let  be 

distinct prime ideals of R. Let for each ,  be a 

-prime submodule of M. If , then  

for some  

Proof . We do induction on n. The case  n = 2 is easy. Now 

let  and the case  is settled. By definition for 

each  we have  From the 

hypothesis  it follows that 

Now let the contrary be true. 

Then and hence ( , for any . 

Also from the inductive hypothesis it follows that 

for each and so 

( . Let q be a minimal 

element of the set with respect to  Then 

for each . Without loss of 

generality we may assume that . Let 

 for all . Then from the definition 

it follows that , for all . On the other 

hand for each  and , if  

and , then  and  Therefore it 

follows from the definition that . So , and 

consequently, . As  it follows 

that there exists an element . Now for 

each  we have  and . So it 

follows from the definition that . Therefore, 

 But it is easy to see 

that . Thus for 

each , 

 is -prime submodule of N. Therefore without loss 

of generality we may assume that  

. Next let . Then it is not to see 

that for each ,  is -prime submodule of 

 and  Therefore, without loss of 

generality we may assume and  

and  Then there is an exact sequence 

, which implies that 

 On the other 

hand for each  we have 

. So . 

Hence  Now if we have 

, then there is an exact sequence 

 which implies that 

. So  for some , which is a 

contradiction. So Then there is an 

element  As , it follows that 

. On the other hand since  it follows 

that there is an element  such that  

Now as  it follows that  for 

some  which is a contradiction. This completes 

the inductive step. 

   Remark: Proposition 3.1 does not hold in general. For 

example let  be a prime number and  Let 

 and  Let  

 
 Then  is a finite set that has at most  element and for 

each , N is a -prime submodules of M such that 

. But  for any .  

The following proposition is a generalization of [12, Ex. 

16.8]. 

Proposition 3.2. Let R be a ring, M a non-zero R-module, 

N a submodule of M and . Let  be distinct 

prime ideals of R. Let for each ,  be a -prime 

submodule of M. If , then there exists 

 such that  

Proof. We use induction on n. Let n = 1. If  then 

. So there is  and it is easy to see that 

. But if , then by choosing  

the assertion holds. Now suppose  and the case  

is settled. Let q be a minimal element of the set  

with respect to . Then  for 

each . Without loss of generality we 

may assume that . Then it is easy to see that 

. By inductive hypothesis there is an element 

 such that . So the assertion hold for 

, whenever . So we may assume 

. Then we claim that . Because, 

if  then  and , 



University College  of Takestan 

 

which is a contradiction. Therefore, there exists an 

element . As  it follows that there 

exists an element  . Then it easily 

follows from the definition of the -prime submodule that 

. Moreover, since  it follows from the 

definition that . Now it is easy to see that 

. Therefore, the assertion hold 

for . This completes the induction step. 

Remark: Proposition 3.2 does not hold in general. For 

example let  be a prime number and 

 and M = . Let 

, and , 

for . Then  is -prime submodule of 

the R-module M, for all . Also as 

 and , it follows 

that . But for any  we have 

. 

Now we give an other aspects of prime avoidance Theorem 

in different states. 

Proposition 3.3. Let R be a ring, M a non-zero R-module, 

N a submodule of M and . Let for each , 

 and for  and , the ideals  

be distinct elements of Spec(R). Let for each  and 

, be a -prime submodule of M. Let for 

each , .  If , then 

 for some . 

Proof. Let the contrary be true. Then for each  

we have . Therefore there exists  such 

that . But in this situation we have 

. 

Consequently, it follows from proposition 3.1 that there is 

, such that , which is a contradiction. 

Proposition 3.4. Let R be a ring, M a non-zero R-module, 

N a submodule of M,  and . Let for each  

,  and for  and , the 

ideals  be distinct elements of Spec(R). Let for 

each  and , be a -prime 

submodule of M. Let for each , . If 

 then there exists  such that 

. 

Proof. For each  we have . 

Therefore there exists  such that 

. But in this situation using proposition 3.1 

we have 

. 

Consequently, it follows from proposition 3.2 that there is 

, such that . But 

since  , it follows that 

, as required. 

Proposition 3.5. Let R be a ring, I an ideal of R and . 

Let  be ideals of R such that for each 

 we have . If , 

then there exists an element  such that 

 

Proof. For each  we have . 

Therefore for each , since  it 

follows that there exists  such that . 

But in this situation we have . 

Consequently, it follows from [12, Ex. 16.8] that there is 

, such that  . But since 

, it follows that , as 

required. 

Before bringing the next result we need the following well 

known lemma. 

Lemma 3.6. Let  be a commutative local ring such 

that  is infinite. Let M be an R-module and  

be submodules of M such that . Then there 

exists , . 

Proof. The assertion follows using NAK Lemma. 

Proposition 3.7. Let R be a commutative ring, M be an R-

module and  be submodules of M such that 

. Then  

Proof. Suppose the contrary be true. Then there exists 

p . So  is an integral 

domain but not a field and therefore  is infinite. By 

hypothesis and Proposition 3.6 there exists  such 

that  and so  which is a 

contradiction. 

Corollary 3.8. Let R be a commutative ring and 

. Let M be an R-module and 

be -prime submodules of M and N a submodule 

of M such that  . Then there exists  

such that . 

Proof. Let for any ,  . Then for all 

, we have . Since  , it 

follows that  and so . Hence 

. On the other hand there exists 

 and so . Let . Then 

 and , so . 

Consequently  and so . 

Now it is easy to show that  is a -prime submodule 

of N. Since it follows that N 

= But in this case 

. Since  

this is impossible by Proposition 3.7. 

Proposition 3.9. Let R be a commutative ring 

and  such that  infinite. Let M be an R-

module and  be p-prime submodules of M and N 

a submodule of M such that . Then there exists 

 such that . 

Proof. If , the assertion follows from 

Corollary 3.8. So let  and for all , we 

have . Hence for any , there exists 

 . Set  and so we have 

. Since  is  
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infinite, there exists  such that 

. This implies that 

 . Hence  

which is a contradiction.  

Proposition 3.10 Let R be a commutative ring 

and  such that  infinite. Let M be an R-

module and  be p-prime submodules of M and N 

a submodule of M. Let  such that 

. Then there exists  such 

that . 

Proof. It is certainly true for t = 1. Let t > 1 and the result 

has been proved for . If then by 

Proposition 3.9 there exists , such that . 

Without loss of generality we may assume that j = t. By 

induction hypothesis there exists  such that 

. Since it follows that 

 and so the assertion follows. Now 

suppose that , then there exists 

. In this case if  we set a = 0 

and if then we set a = c. Now suppose that the 

above conditions are not true. We may assume that there 

exists  such that and 

. Since  is infinite, so there exist 

 non-zero distinct elements in  such as 

. Set 

. If there exists an 

element   such that  then the 

proof is complete. Otherwise, for each , 

there is  such that  . If  

then  and so  which is a contradiction. So 

 and hence . Whence, 

according to the Dirichlet drawer principle, there exists 

 and  such that 

 and  belong to . Therefore 

  which is a contradiction. 

4. Minimal prime submodules 

The following lemma is needed in the proof of the first 

main result of this section. Note that in the sequel for any 

submodule B of an R-module M, the set of all minimal 

prime submodules of M over B is denoted by Min(B). 

Moreover, we denote Min(0) by Min(M). Also, V (B) is 

defined as follows: 

 
Lemma 4.1. Let R be a commutative ring and 

. Let M be an R-module and 

 be respectively -prime and -prime 

submodules. Then  if and only if  . 

Proof. If  then obviously . Conversely, Let 

but . Since  and 

 it follows that L1 = L2 which is a 

contradiction. 

Definition 4.2. Let M be an R-module and B be a 

submodule of M. Set 

The minimal prime submodules of an R-module M has 

been studied in [16], for example see [16, Theorem 2.1]. In 

the next theorem we present a new conditions that an R-

module M has only a finite number of minimal prime 

submodules, whenever R is a Noetherian ring, which is a 

generalization of [2, Theorem 2.1]. 

Theorem 4.3. Let R be a Noetherian ring, M be an R-

module and B be a submodule of  M. Then the following 

statements are equivalent: 

 (1) Min(B) is finite. 

 (2) For every  there exists a finitely generated 

submodule  of  such that  

 (3) For every  there exists a finitely generated 

submodule  of  such that . 

 (4) For every , . 

 (5) For every  there exists an element  

of  such that  

 (6) For every , . 

 (7) For every  there exists an element  

of  such that  

 (8) For every  there exists a finitely generated 

submodule  of  such that  

 (9) For every  there exists a finitely generated 

submodule  of  such that . 

Proof. Without loss of generality, we may assume that B = 

0,  and consequently . 

 Since Min(M) is finite, by Lemma 4.1 and 

Proposition 3.1, for every , 

 and there exists 

. Set . Then  is 

finitely generated and set  is 

finite. 

 Let  and 

. Using Lemma 4.1 

and Proposition 3.1 we can find an 

element . Let . Then  is 

finitely generated and . 

 Suppose the contrary be true. Then the set 

Min(M) is infinite. Let 

 

 

 
 

We show that there exists a maximal element K of F such 

that  is a prime ideal. Since Min(M) is infinite, so 

the zero submodule of M belong to the F and therefore by 

Zorn's Lemma F has a maximal element. Let L be a 

maximal element of F. If   be a prime ideal, we 

are through. If not, then it is clear that . Let 

. By the definition there exists 
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 such that  and 

therefore . Since , it follows that 

there exists an element  such that . Now there 

exists  such that . In particular, 

. 

Since  is finitely generated, so 

. But in this case for all 

, we have 

 and . Now if  be a p-Prime submodule, 

then  and so . 

Hence . So for all , we 

have  and therefore . Let 

. 

Since R is Noetherian it follows that U has a maximal 

element, say . , for some maximal element H 

of F. We claim that  is a prime ideal of R. If not, 

according to the above argument, there exists 

 such that  and 

. By choosing of , we must have 

, which is a contradiction. Therefore 

 is a prime ideal. Now we show that H is a 

-prime submodule. Otherwise there exist  and 

, such that .So 

 and hence there exists 

 such that . Consequently,  

On the other hand by definition for some 

. Since , it follows that there exists 

 such that  and so . According 

to the above argument,  which 

implies . Finally, we have , 

which is a contradiction withthe choosing of . Therefore 

H is a -prime submodule of M. Whence, H contains a 

minimal prime submodule of M such as . By assumption 

there exists a submodule of  such that  

and , which is a contradiction. Therefore, Min(M)is 

a finite set. 

Now the proof of  is complete. 

 Follows from Lemma 4.1 and Proposition 3.1. 

 Since  is clear so we 

have . 

Now we have the following: 

. 

 Is clear. 

 Since for every , 

, it follows that thereexists  

such that  On the other hand for 

all , we have , 

where  is finitely generated. So the assertion follows. 

 and  are clear. 

 Follow by a similar arguments as in 

.  

The following results follow from Theorem 4.3. 

Corollary 4.4. Let R be a Noetherian ring, M an R-module 

and B be a proper submodule of M. Then Min(B) is infinite 

if and only if there exists  such that 

. 

Proof. Follows immediately from Theorem 4.3. 

Corollary 4.5. Let R be a Noetherian ring, M an R-module 

and B be a proper submodule of M such that any minimal 

prime submodule over B is finitely generated. Then Min(B) 

is finite. 

Proof. Follows immediately from Theorem 4.3. 

Definition 4.6. Let R be a Noetherian ring,  a 

finitely generated R-module and N be a proper submodule 

of M. Then the radical of N is defined as: 

. 

Before bringing the next definition, recall that for any ideal 

I of a Noetherian ring, the arithmetic rank of I, denoted by 

ara(I), is the least number of elements of I required to 

generate an ideal which has the same radical as I, i.e., 

Definition 4.7. Let R be a Noetherian ring,  a 

finitely generated R-module and N be a proper submodule 

of M. 

We define the arithmetic rank of N, as: 

The next theorem is a generalization of [14, Theorem 2.7]. 

Theorem 4.8. Let R be a Noetherian ring,  a finitely 

generated R-module and N be a proper submodule of M. 

Then . 

Proof. Let . We may assume that d is 

finite. Now, suppose, to the contrary, that 

. Let . Since  

it follows from the definition that there exist elements 

 in N such that As 

n > 0 it follows that . Therefore it 

follows from Lemma 4.1and proposition 3.1 that 

. Therefore 

, and so by Proposition 3.2 

there is such that  

. 

Let . Then  and 

. We shall construct the 

sequence  such that 

 and 

, for each , by 

an inductive process. To do this end, assume that 

, and that we have already constructed 

elements  such that 

 
 

We show how to construct . To do this, as 

 it follows that 

. 

Therefore it follows from Lemma 4.1 and proposition 3.1 

that 

. 

Therefore 

, and so 
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by Proposition 3.2 there is  

such that 

. 

Let . Then  and 

.This 

completes the inductive step in the construction. Now it is 

easy to see that . Also using 

an induction argument we can deduce that for any 

 and any  we 

have . Consequently, since there exists a prime 

submodule L of M in 

which it follows that 

. Which implies that 

, as required. 
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