Available online at http://UCTjournals.com
UCT Journal of Research in Science, Engineering and Technology
UCT . J. Resea. Scien. Engineer.Techno.(UJRSET)
2(1): 01-03 (2014)

Spline Collocation for Volterra - Fredholm Integro-Differential Equations

Nehzat Ebrahimi ${ }^{1}$, Jalil Rashidinia ${ }^{2}$
${ }^{1,2,3}$ Department of Mathematics,Islamic Azad University,Central Tehran Branch,Iran
*Corresponding author's E-mail: Ebrahimi_nehzat@yahoo.com

Abstract

A collocation procedure is developed for the linear and nonlinear Volterra - Fredholm integro-differential equations, using the globally defined B-spline and auxiliary basis functions. The solution is collocated by cubic B spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically.

Original Article:

Received 05 Feb. 2014
Accepted 18 Mar. 2014
Published 30 Mar. 2014

Keywords:

Volterra-Fredholm integrodifferential equations; Cubic B spline Newton-Cotes formula, Convergence analysis

1.Introduction

Consider the nonlinear Volterra-Fredholm integro-differential equation of the form
$\sum_{r=0}^{m} p_{r}(t) y^{(n)}(t)=g(t)+\int_{a}^{t} k_{1}(t, x, y(x)) d x+\int_{a}^{b} k_{2}(t, x, y(x)) d x, m=1,2, t \in[a, b]$,
with the boundary conditions,
$\sum_{r=0}^{m-1}\left[a_{i r y} y^{(n)}(a)+\beta_{i, y} y^{(m)}(b)\right]=\gamma_{i}, \quad 0 \leq i \leq m-1, \quad$ (2)
where $\alpha_{i s x} \beta_{i, y}$ and γ_{i} are given real constants. The given kernels k_{1}, k_{2} are continuous on [a, b] and satisfie a uniform Lipschitz, and $g(t)$ and $P_{r}(t)$ are the known functions and y is unknown function. The boundary value problems in terms of integrodifferential equations have many practical applications. A physical event can be modelled by the differential equation, an integral equation or an integro-differential equation or a system of these equations. Of course, these equations can also appear when transforming a differential equation into an integral equation [1, 4, 5].Due to this, some authors have proposed numerical methods to approximate the solutions of nonlinear Fredholm-Volterra integrodifferential equations. To mention a few, in [8] the authors have discussed the Taylor polynomial method for solving integrodifferential equations (1).The triangular functions method has been applied to solve the same equations in [3].Furthermore, the operational matrix with block-pulse functions method is carried out in [2] for the aforementioned integro-differential equations. The Hybrid Legendre polynomials and Block- Pulse functions approach for solving integro-differential equations (1) are proposed in [7]. Yalcinbas in [15] developed the Taylor polynomial solutions for the nonlinear Volterra-Fredholm integral equations and in [14] considered the high-order linear Volterra-

Fredholm integro-differential equations. Using a global approximation to the solution of Fredholm and Volterra integral equation of the second kind is constructed by means of the spline quadrature in $[6,10,9,11,12,13]$.

In this paper, we use cubic B-spline collocation for approximation unknown function and use of the Newton-Cotes rules for approximating integrand.

2. cubic B-spline

We introduce the cubic B-spline space and basis functions to construct an interpolation s to be used in the formulation of the cubic B-spline collocation method. Let
$\pi:\left\{a=t_{0}<t_{1}<\cdots<t_{N}=b\right\}$, be a uniform partition of the interval $[a, b]$ with step size $h=\frac{b-a}{N}$. The cubic spline space is denoted by
$S_{a}(\pi)=\left\{s \in C^{2}[a, b] ; s \mid\left[t_{i}, t_{i+1}\right] \in P_{a} \quad, \quad i=0,1, \ldots, N\right\}$,
where P_{3} is the class of cubic polynomials. The construction of the cubic B-spline interpolate s to the analytical solution y for ${ }^{(1)}$ can be performed with the help of the four additional knots such that
$t_{-2}<t_{-1}<t_{0}$ and $t_{N}<t_{N+1}<t_{N+2}$.
We can define a cubic B-spline $s(t)$ of the form

$$
s(t)=\sum_{i=-1}^{N+1} c_{i} B_{i}^{a}(t)
$$

where

$$
B_{i}(t)=\frac{1}{6 h^{3}}\left\{\begin{array}{lc}
\left(t-t_{i-2}\right)^{3} & \text { if } t \in\left[t_{i-2}, t_{i-1}\right] \\
h^{3}+3 h^{2}\left(t-t_{i-1}\right)+3 h\left(t-t_{i-1}\right)^{2}-3\left(t-t_{i-1}\right)^{3}, & \text { if } t \in\left[t_{i-1}, t_{i}\right] \\
h^{3}+3 h^{2}\left(t_{i+1}-t\right)+3 h\left(t_{i+1}-t\right)^{2}-3\left(t_{i+1}-t\right)^{3}, & \text { if } t \in\left[t_{i}, t_{i+1}\right] \\
\left(t_{i+2}-t\right)^{3} & \text { if } t \in\left[t_{i+1}, t_{i+2}\right] \\
0 & \text { otherwise, }
\end{array}\right.
$$

satisfying the following interpolator conditions:
$s\left(t_{i}\right)=y\left(t_{i}\right), \quad 0 \leq i \leq N$,
and the end conditions

$$
\text { (i) } s^{\prime}\left(t_{0}\right)=y^{\prime}\left(t_{0}\right), \quad s^{\prime}\left(t_{N}\right)=y^{\prime}\left(t_{N}\right),
$$

or

$$
\begin{aligned}
& D^{j_{s}}\left(t_{N}\right), \quad j= \\
& 1,2,
\end{aligned} \quad(i i) D^{j_{S}}\left(t_{0}\right)=
$$

(4)
or
(iii) $s^{n \prime}\left(t_{0}\right)=0, s^{n \prime}\left(t_{N}\right)=0$.

3. The Collocation Method

3.1 Nonlinear Volterra-Fredholm integro-differential equation

In the given nonlinear Volterra-Fredholm integro-differential Eq. (1), we can approximate the unknown function by cubic B-spline (3), then we obtain:
$\sum_{r=0}^{m} p_{r}(t) s^{(r)}(t)=g(t)+\int_{a}^{t} k_{1}(t, x, s(x)) d x+\int_{a}^{b} k_{2}(t, x, s(x)) d x, m=1,2, t \in[a, b],(5)$ with the boundary conditions,
$\sum_{r=0}^{m-1}\left[\alpha_{i z r} s^{(r)}(a)+\beta_{i, y} s^{(r)}(b)\right]=\gamma_{i}, \quad 0 \leq i \leq m-1$.

We now collocate Eq. (5) at collocation points
$t_{j}=a+j h, h=\frac{b-a}{N}, j=0,1_{v, \ldots} N_{x}$ and we obtain
$\sum_{r=0}^{m} p_{r}\left(t_{j}\right) s()^{(n)}\left(t_{j}\right)=g\left(t_{j}\right)+\int_{a}^{t_{j}} k_{1}\left(t_{j}, x, s(x)\right) d x+\int_{a}^{b} k_{2}\left(t_{j} x, s(x)\right) d x, m=1,2, j=1, \ldots, N .(6)$

To approximate the integro-differential Eq. (6), we can use the Newton- Cotes formula, when n is even then the Simpson rule can be used and when n is multiple of 3 , we have to use the threeeighth rule, then we get the following nonlinear system:
$\sum_{r=0}^{m} p_{r}\left(t_{j}\right) s^{(n)}\left(t_{j}\right)=g\left(t_{j}\right)+h \sum_{i=0}^{j} w_{j i} k_{1}\left(t_{j} x_{i}, s\left(x_{i}\right)\right)+h \sum_{i=0}^{N} w_{j i} k_{2}\left(t_{j}, x_{i}, s\left(x_{i}\right)\right), j=1, \ldots, N, m=1,2, \quad$ B with the boundary conditions,
$\sum_{r=0}^{m-1}\left[\alpha_{i x} s^{(r)}(a)+\beta_{i, y} s^{(r)}(b)\right]=\gamma_{i}$.

$$
0 \leq i \leq m-1
$$

where $x_{i}=a+i h_{s} i=0_{s, \ldots} N$, we need more equations to obtain the unique solution for Eq. (7). Hence by associating Eq. (7) with (4) , we have the following nonlinear system $(N+3) \times(N+3):$

where ${ }^{w_{j i i}}$ represents the weights for a quadrature rule of NewtonCotes type. By solving the above nonlinear system, we can determine the coefficients $c_{i}, i=-1_{v, \ldots} N+1$, by setting c_{i} in (3), we obtain the approximate solution for Eq. (1).

4. Error analysis: convergence of the approximate solution

In this section, we consider the error analysis of the VolterraFredholm integro-differential equation of the second kind .To obtain the error estimation of our approximation, first we recall the following definition in [10].

Definition : The most immediate error analysis for spline approximates ${ }^{s}$ to a given function f defined on an interval $[a, b]$ follows from the second integral relations.

$$
\begin{aligned}
& \text { If } \quad f \in C_{4}[a, b]_{x} \\
& \left\|D^{j}(f-S)\right\| \leq y h^{4-j} j=0,1,2,3,4 \text {. Where }\|f\|_{m}= \\
& \max _{0 \leq i s N} s u p_{t_{i-1} \leq t s t_{i}} \mid f(t) \|_{0}
\end{aligned}
$$

and $D^{\tilde{J}}$ the j-th derivative.
Theorem : The approximate method
$\sum_{r=0}^{m} p_{r}\left(t_{j}\right) s\left(\eta\left(t_{j}\right)=g\left(t_{j}\right)+h \sum_{i=0}^{j} w_{j j} k_{1}\left(t_{j} x_{i j} s\left(x_{i}\right)\right)+h \sum_{i=0}^{N} w_{j i} k_{2}\left(t_{j}, x_{i j} s\left(x_{i}\right)\right) \quad j=1, \ldots, N, m=1,2, \quad(9)\right.$
for solution of the nonlinear Volterra- Fredholm integrodifferential Eq .(5) is converge and the error bounded is
$\left|e_{j}^{(m)}\right| \leq \frac{h W L}{\left|p_{m j}\right|} \sum_{i=0}^{j}\left|e_{i}\right|+\frac{h W L^{*}}{\left|p_{m j}\right|} \sum_{i=0}^{N}\left|e_{i}\right|+\frac{1}{\left|p_{m j}\right|} \sum_{r=0}^{m-1}\left|p_{r j} \| e_{j}^{(r)}\right|$

Proof : We know that at $t_{j}=a+j h, h=\frac{t-a}{N}, j=1_{s, \ldots} N_{s}$ the corresponding approximation method for nonlinear Volterra- Fredholm integrodifferential Eq. (5) is
$\sum_{i=0}^{m} p_{r}\left(t_{j}\right) s\left(s_{j}\left(t_{j}\right)=g\left(t_{j}\right)+h \sum_{i=0}^{j} w_{j j} k_{1}\left(t_{p} x_{i j} s\left(x_{i}\right)\right)+h \sum_{i=0}^{N} w_{j j} k_{2}\left(t_{p} x_{j} s\left(x_{i j}\right)\right) \quad . j=1, \ldots, N, m=1,2 . \quad\right.$ (10)
By discretizing (1) and approximating the integrand by the Newton- Cotes formula, we obtain

Where
$E\left(h_{h} t_{j}\right)=\left(\int_{a}^{t_{j}} k_{1}\left(t_{j} x_{i} y(x)\right) d x+\int_{a}^{b} k_{2}\left(t_{j} x, y(x)\right) d x\right)-\left(h \sum_{i=0}^{j} w_{j j} k_{1}\left(t_{j} x_{i} y\left(x_{i}\right)\right)+h \sum_{i=0}^{w} w_{j j} k_{2}\left(t_{j} x_{i} y\left(x_{j}\right)\right)\right)$.

By subtracting (11) from (10) and using interpolatory conditions of cubic B-spline, we get

We suppose that $W=\max _{\mathrm{i}, j}\left|w_{j, i}\right|$ and
$s^{(m)}\left(t_{j}\right)=s_{j}^{(m)}{ }_{v} y^{(m)}\left(t_{j}\right)=y_{j}^{(m)}, j=1{ }_{v, \ldots} N_{v} m=1,2{ }^{(m)}$
and kernels $k_{1}, k_{2 \text { satisfy a Lipschitz condition in its third }}$ argument of the form
$\left|k_{1}(t, x, s)-k_{1}(t, x, y)\right| \leq L|s-y|,\left|k_{2}(t, x, s)-k_{2}(t, x, y)\right| \leq L^{*}|s-y|$,
where $L_{s} L^{*}$ are independent of $t_{v} x_{v} s$ and \bar{y}. We get
$\left|\left|p_{m j}\right|\right| s^{(m)}-y_{j}^{(m)}\left|\leq h W L \sum_{i=0}^{j}\left(s\left(x_{i}\right)-y\left(x_{i}\right)\right]+h w L \cdot \sum_{i=0}^{N}\left(s\left(x_{i}\right)-y\left(x_{i}\right)\right]+\sum_{i=0}^{m-1}\right| p_{i j}| | s_{j}^{(m}-y_{j}^{(p)} \mid, j=1, \ldots, N$.
Since that $\left|p_{m j}\right| \neq 0_{x}$ then we have
$\left|e_{j}^{(m)}\right| \leq \frac{h W L}{\mid p_{m j}} \sum_{i=0}^{j}\left|e_{i}\right|+\frac{h W L^{*}}{\left|p_{m j}\right|} \sum_{i=0}^{N}\left|e_{i}\right|+\frac{1}{\left|p_{m j}\right|} \sum_{r=0}^{m-1}\left|p_{r j} \| e_{j}^{(r)}\right|$.
Where $\theta_{j}^{(m)}=s_{j}^{(m)}-y_{j}^{(m)}{ }_{j}^{\left(m=1_{v, \ldots}, N_{v} r=0, \ldots, m .\right.}$
When $h \rightarrow 0$ then the above first and second term are zero and the third term in the above tends to zero because this term is due to interpolating of $y(t)$ by cubic B-spline. We get for a fixed j^{x}
$\left|e_{j}^{(m)}\right| \rightarrow 0$ as $h \rightarrow 0, m=0,1,2$.

5.Conclusions

In the present work, a technique has been developed for solving linear and nonlinear Volterra- Fredholm integro-differential equations by using the Newton-Cotes formula and collocating by cubic B-spline. These equations are converted to a system of linear or nonlinear algebraic equations in terms of the linear combination
coefficients appearing in the representation of the solution in spline basic functions.

References

[1] Abdou, M. A., 2003, On Asymptotic Methods for Fredholm-Volterra Integral Equation of the Second Kind in Contact Problems, Journal of Computational and AppliedMa- thematics, Vol. 154, No. 2, 431-446.
[2] Babolian, E., Masouri, Z., Hatamzadeh-Varmazyar, S., 2008, New direct method to solve nonlinear Volterra-Fredholm integral and integrodifferential equations using operational matrix with blockpulse functions,Progress In Electromagnetics Research B, vol. 8, 59-76.
[3] Babolian, E., Masouri, Z., Hatamzadeh-Varmazyar, S., 2009 , Numerical solution of nonlinear Volterra-Fredholm integro-differential equations via direct method using triangular functions,Computers and Mathematics with Applications, vol. 58, No. 2, 239-247.
[4] Bloom, F., 1980, Asymptotic Bounds for Solutions to a System of Damped Integro-Differential Equations of Electro-magnetic Theory, Journal of Mathematical Analysis and Applications, Vol. 73, 524-542.
[5] Jaswon, M. A., Symm, G. T., 1977, Integral Equation Me thods in Potential Theory and Elastostatics, Academic Press, London, ,.
[6] Mahmoodi, Z., Rashidinia, J., Babolian, E., 2012, B-Spline collocation method for linear and nonlinear Fredholm and Volterra integro-differential equations. Applicable Analysis,, 1-16.
[7] Maleknejad, K., Basirat, B., Hashemizadeh, E., 2011, Hybrid Legendre polynomials and block-pulse functions approach for nonlinear VolterraFredholm integro-differential equations, Computers and Mathematics with Applications, vol. 61, No. 9, 2821-2828.
[8] Maleknejad, K., Mahmoudi, Y., 2003, Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations,Applied Mathematics and Computation, vol. 145, No. 2-3, 641653.
[9] Netravali, A.N., Figueiredo, R.J.P., 1974, Spline approximation to the solution of the linear Fredholm integral equation of the second kind .SIAM. J. Numer. Anal.11, 538-549.
[10] Prenter, P.M., 1975, Spline and Variational Methods. Wiley \& Sons, New-York,.
[11] Rashed, M.T., 2003, An expansion method to treat integral equations. Appl. Math. Comput.135, 65-72.
[12] Rashidinia, J., Babolian, E., Mahmoodi, Z., 2011, Spline Collocation for nonlinear Fredholm Integral Equations. International Journal of Mathematical Modelling and Computations, 1, 1, 69-75.
[13] Rashidinia, J., Babolian, E., Mahmoodi, Z., 2011 , Spline Collocation for Fredholm Integral Equations. Mathematical Sciences,5, 2, 147-158.
[14] Yalcinbas, S., Sezer, M., 2000, The approximate solution of highorder linear Volterra-Fredholm integrodifferential equtions in terms of Taylor polynomials, Appl. Math. Comput. 112, 291-308.
[15] Yalcinbas, S., 2002 , Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equtions, Appl. Math. Comput. 127, 195-206.

